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Title: Metabolic and vascular risk factors are associated with widespread alterations in cerebral blood flow: ASL 
data from the CARDIA study 
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Introduction: Vascular dysregulation and cerebral blood flow (CBF) deficits appear to be early harbingers of 
dementia, including Alzheimer’s disease 1. In this study, we hypothesize that regional grey matter CBF will be 
associated with mid-life vascular risk factors that make up metabolic syndrome, namely: obesity, dyslipidemia, 
dysregulated glucose homeostasis and hypertension, which studies suggest play a role in neurodegeneration 2. 
Methods: Data are from a sub-sample of black and white men and women who participated in year-25 of the 
community-based Coronary Artery Risk Development in Young Adults (CARDIA) study 3. CARDIA is a 
longitudinal study of the development and determinants of cardiovascular disease. This abstract focuses on the 
sub-sample of participants (N=451) that underwent a 3 T brain MRI, including T1-weighted (for brain region 
segmentation), phase contrast angiography of the internal carotid and vertebral arteries (used to compute ASL 
labeling efficiency) 4, and pseudo-continuous ASL with 2D echo planar imaging. Body mass index was not 
associated with global CBF estimates (i.e. ASL to phase contrast angiography, t=-0.67, p=0.50). We employ a 
multivariate partial least squares (PLS) analysis, an approach designed to handle highly collinear variables 5. 
Results: Ten vascular risk factors used in the PLS model had a high degree of collinearity (Fig. 1). We identified 
one significant PLS latent variable (p<0.001, 80% explained variance) that consisted of measures of obesity 
(body mass index and waist circumference), dysregulated glucose homeostasis (fasting glucose, oral glucose 
tolerance level, and insulin level), low high-density lipoprotein, and high triglycerides. Among the participants, 
(50.3 ± 3.5 years, 220 male / 231 female), we observed 60 out of the 93 pre-defined grey matter CBF regions 
significantly contributed to the PLS latent variable. Discussion: Components of metabolic syndrome are 
associated with widespread alterations in regional CBF, as revealed by an analysis approach that accounts for the 
high degree of overlap seen in both inter-regional CBF and among the vascular risk factors. In particular, obesity, 
dyslipidemia, dysregulated glucose homeostasis were associated with decreased CBF, whereas blood pressure 
was not. Decreased CBF may explain lower memory performance, as revealed by a second PLS that included a 
verbal learning cognitive test (data not shown). Longitudinal analysis will help pinpoint the decade(s) most 
critical in maintaining cerebrovascular health. 

 

 
Left: Bivariate correlations between each of the vascular risk 
factors are shown both as colored ellipses and numerically. 
Above: The partial least squares identified the regions in blue 
where cerebral blood flow is altered in relation to the metabolic 
syndrome factor. 

References: 
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4.  Dolui S, et al. J Cereb Blood Flow Metab. 2016;36(7):1244-1256.  
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White matter oxygen delivery is impaired in both sickle and non sickle anemia syndromes 
1Yaqiong Chai, 2Adam Bush, 2Chau Vu, 1Natasha Lepore, 3Thomas Coates and 4John C Wood 

1Department of Radiology and Nuclear Medicine, Children’s Hospital Los Angeles, CA, 2Department of Radiology, Stanford University, Palo Alto, 
CA, 3Section of Hematology, Children’s Hospital Los Angeles, CA, 4Division of Cardiology, Children’s Hospital Los Angeles, CA 

Introduction:Patients with thalassemia intermedia, beta thalassemia major and sickle cell disease have a higher risk of cerebrovascular 
disease and stroke1. We have previously demonstrated that patients with chronic anemia syndromes have increased total cerebral blood 
flow to compensate for their decreased oxygen carrying capacity such that global oxygen delivery is preserved2. Using arterial spin 
labeling, we observed that while global and grey matter (GM) oxygen (O2) delivery was normal in patients with sickle cell anemia, 
white matter (WM) O2 delivery was 35% lower than control subjects and declined monotonically with age3. In this study, we compared 
regional O2 delivery in patients with sickle cell and non-sickle cell anemia syndromes to determine whether the effect could be solely 
attributed to low hemoglobin levels.  
Methods: The study included 20 patients with anemic syndromes (ACTL), 32 patients with sickle cell disease (SCD) and 25 healthy 
control patients (CTL) that were recruited from the Children’s Hospital Los Angeles. Brain MRI was performed on a Philips Achieva 3 
Tesla scanner with an 8-channel head coil. Imaging protocol consisted to 3D T1w, 3D T2w, 3D MRA, and 3D PCASL scans4.  
CBF quantification was calculated using a two-compartment kinetic quantification model reported by Wang et. al5. Sickle cell specific 
quantification parameters were previously described4. The CBF maps were converted into cerebral O2 delivery maps to correct for 
hemoglobin and O2 saturation in anemic groups. The equations show the relationship of hemoglobin, O2 content and O2 delivery: 
Oxygen Delivery = CBF × Oxygen Content  (1)              Oxygen Content = 1 .34 × Hemoglobin×SpO2 + 0.003 × pO2   (2) 
where SpO2 is the arterial oxygen saturation and pO2 is the partial pressure of oxygen (~100 torr in room air). The preprocessing and 
registration pipeline of CBF to standard atlas was previously published in Chai et. al.6. Predictors of global, GM and WM were identified 
using univariate and stepwise multivariate regression (JMP Pro, SAS, Cary NC).  
Results: Patients’ demographics have been 
summarized in previous work2,3. There was no 
significance difference in age and sex between 
three groups and hemoglobin levels were well 
balanced in SCD and ACTL groups. All anemic 
subjects were mildly desaturated compared to 
CTL group and exhibited higher circulating 
cell-free hemoglobin due to ineffective 
erythropoiesis. Thirteen of the 23 non-sickle 
anemic subjects and 8 out of 32 sickle cell 
patients were receiving transfusion therapy every 
three weeks; these patients were studied at their 
hemoglobin nadir to better match non-
transfused subjects. MRA images were 
screened by a licensed neuroradiologist and 
were normal for all participants. 
Figure 1 illustrates group comparison of CBF 
and O2 delivery in GM, WM and whole brain. Whole brain and GM CBF in both anemic groups were significantly higher than CTL but 
WM CBF was not. CBF was inversely correlated with oxygen content, similar to phase contrast studies7. O2 delivery in whole brain and 
GM was equivalent in all three groups, but WM O2 delivery was 35% lower in SCD subjects (p<0.0001), and 20% lower in ACTL 
patients (p=0.07). O2 delivery was inversely correlated with age, with p-values of 0.0043, 0.0036 and 0.1 for global, GM and WM, 
respectively.   
Discussion: Chronically anemic subjects appear to maintain normal GM oxygen delivery by increasing cerebral blood flow. However, 
deep WM structures do not experience comparable hyperemia with anemia, making WM O2 delivery hematocrit dependent. This 
observation may explain the high prevalence of WM injury observed in sickle cell and thalassemia intermedia subjects. The present data 
also suggests that the nature of the anemia, in addition to its severity, may also contribute to WM health. Although the SCD and ACTL 
cohorts were relatively balanced for hemoglobin levels, SCD patients had significantly worse WM oxygen delivery. Larger studies are 
necessary to determine whether resting oxygen delivery predicts WM stroke risk and whether chronic transfusion or hydroxyurea therapy 
improves WM perfusion.  
Reference: 
1. Musallam KM, et. al., Cerebral infarction in β-thalassemia intermedia: Breaking the silence. Thromb Res. 2012;130(5):695-702. 
2. Chai Y, et al. Chronic anemic patients have impaired cerebral oxygen delivery using PCASL MRI, submitted to: ISMRM 2019 
3. Chai et al, White Matter has Impaired Resting Oxygen Delivery in Sickle Cell Patients. Am J Hematol, under revision.  
4. Bush AM, et al. PCASL quantification in anemic subjects with hyperemic cerebral blood flow. Magn Reson Imaging. 2018;47 
5. Wang J, et al. Comparison of quantitative perfusion imaging using ASL at 1.5 and 4.0 Tesla. Magn Reson Med. 2002;48 
6. Chai et al. Regional Cerebral Blood Flow Measurement in Patients with Sickle Cell Disease Using PCASL. EMBC: 2016 
7. Bush AM, et al. Determinants of resting cerebral blood flow in sickle cell disease. Am J Hematol. 2016; 

Figure	1:	Measurements	of	CBF	and	O2	delivery	for	the	whole	brain,	grey	matter	 (GM)	and	
white	matter	 (WM).	SCD=	sickle	cell	disease,	CTL	=	healthy	controls,	ACTL	=	anemic	control	
subjects.	Asterisk	indicates	significant	group	difference	(p<0.05),	compared	to	CTL.	Error	bar	
shows	standard	deviation.	
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Introduction Dynamic susceptibility contrast (DSC) based measurement of cerebral blood volume (CBV) can be used as predictor of glioma grade and 
progression-free and overall survival

1
. Arterial spin labelling (ASL) allows for measurements of cerebral blood flow (CBF) without the use of exogenous contrast 

agents. Previous studies have shown good correlation between ASL and DSC vascular measurements as predictors of glioma grade
2
, indicating an option to omit 

DSC imaging in light of the recent finding of gadolinium deposition in the brain. However, the majority of these comparative studies were conducted before the 
introduction of the recently updated World Health Organisation classification of brain tumours

3
, in which molecular diagnosis has become pertinent for glioma 

classification. One such classification factor is whether or not there is a mutation in the isocitrate dehydrogenase (IDH) encoding gene, which has recently been 
shown related to the vascular phenotype of glioma with more angiogenic profiles corresponding to more aggressive IDH-wildtype glioma

4
. Here we investigate 

the effect of IDH-mutation status on the correlation between ASL and DSC-based perfusion measurements.  

 

Methods Sixteen patients with non-enhancing glioma and confirmed 
IDH-mutation status (next generation sequencing, 6 IDH-wildtype and 
10 IDH-mutated) are included within this study. Patients underwent 3T 
MRI scanning (GE, Milwaukee, WI, USA) with a standardised brain 
tumour imaging protocol extended with advanced imaging. Image 
acquisition included 3D sagittal CUBE FLAIR (0.8x0.8 mm

2
 in plane 

resolution, slice thickness 1.6mm, TR/TE/TI= 6.1ms/2.1ms/1897ms), 
3D spiral pseudocontinuous ASL with time-encoded labelling (7 
effective label delays from 0.8 to 2 s, reconstruction matrix 
128x128x42, resolution 1.9x1.9x3.5 mm

3
), and 2D DSC imaging (122 

TRs, TR/TE 1500m/18.6ms, 15 slices, voxel size: 1.875 x 1.875 x 4 mm
3
) 

in which a bolus of 7.5ml of gadolinium-based contrast agent 
(Gadovist, Bayer, Leverkussen, GE) was injected. A pre-load bolus of 
equal size was given approximately 5 minutes prior to DSC imaging. 

DSC images were motion corrected (mcflirt in FSL, version 5.0.9, 
Oxford, UK) and linearly registered to the FLAIR images (flirt in FSL). 
Relative CBV (rCBV) maps were calculated via previously described 
methods

5
. In addition, relative CBF (rCBF) maps were calculated with 

verbena in FSL, which uses a Bayesian framework for fitting rCBF
6
. 

Transit time corrected CBF maps were calculated from the pCASL 
imaging series, based on previously described methods

7
 and linearly 

registered to the FLAIR images.  

The glioma region of interest (ROI) was determined via manual 
segmentation of the hyperintense FLAIR region. Normalised 
histograms were calculated across the ROI to investigate differences in 
ASL-CBF, DSC-rCBV, and DSC-rCBF between IDH-mutated and IDH-
wildtype tumours. Voxel-wise Pearson’s linear correlation coefficients 
(ρ) within this ROI were calculated between ASL-CBF and DSC-rCBV, 
and between ASL-CBF and DSC-rCBF.  

 

Results The normalised histograms (Figure 1) indicate that IDH-
wildtype glioma has higher values for ASL-CBF, DSC-rCBV, and DSC-
rCBF than IDH-mutated glioma. IDH-wildtype glioma has a significantly 
lower ρASL-CBF vs DSC-rCBV and ρASL-CBF vs DSC-rCBF than IDH-mutated glioma 
(0.14 ± 0.21 and 0.15 ± 0.19 compared to 0.39 ± 0.11 and 0.38 ± 0.11, 
respectively, two-sample t-tests p < 0.005, Figures 2 & 3).  

 

Discussion To the best of our knowledge this study is the first to 
indicate that IDH-mutation status of non-enhancing glioma may affect 
the correlation between ASL-CBF and DSC-rCBF/rCBV. The decreased 
correlation between ASL and DSC-based vascular parameters in IDH-
wildtype gliomas may be due to the more angiogenic phenotype in 
these more aggressive tumours, including irregular vasculature such as 
larger and leaky vessels

8
. This in turn can lead to arteriovenous 

shunting of blood, which will result in overestimation of perfusion in 
ASL due to presence of labelled water in the venous vasculature

9
.  

This works shows the potential of voxelwise correlations of ASL-CBF and DSC-rCBF/DSC-rCBV as predictor of IDH-mutation status in non-enhancing glioma and 
highlights that IDH-mutation status should not be neglected when performing comparative studies of ASL and DSC perfusion parameters in glioma. Future work 
includes expansion of the current patient cohort (part of the ongoing iGENE study) and matching the MRI vascular parameters with their histological counterparts 
in targeted biopsies of glioma tissue.  

 

References 1. Law M et al. Radiology. 2008; 2. Grade M et al. Neuroradiology. 2015.  3. Louis DN et al. Vol. 131, Acta Neuropathologica. 2016. p. 803–20.    4. 
Zhang L et al. Neuro Oncol. 2018; 5.  Kellner E et al. J Magn Reson Imaging. 2015;42(4):1117–25.  6. Chappell MA et al. Magn Reson Med. 2015;74(1):280–90.  7. 
Dai W et al. Magn Reson Med. 2013;69(4):1014–22. 8. Conroy S et al. J Neurooncol. 2017; 9.  Wolf RL et al. Am J Neuroradiol. 2008;29(4):681–7.  

 

Voxelwise correlation between vascular parameters obtained with ASL and DSC as predictor of IDH-mutation status in 

non-enhancing glioma  

E.A.H. Warnert1, F. Incekara1,2, A.J.P.E. Vincent2, J.W.Schouten2, M.J. van den Bent3, P.J. French3, H.J. Dubbink4, J.M. Kros4,  
J.A. Hernandez-Tamames1, Marion Smits1 

1 Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands, 2 Department of Neurosurgery, Erasmus MC, Rotterdam, The 

Netherlands,3 Department of Neurology, Erasmus MC, Rotterdam, The Netherlands, 4 Department of Pathology, Erasmus MC, Rotterdam, The Netherlands 

Figure 1. Group averaged normalised histograms across the tumour ROI for IDH-mutated (black 
lines) and IDH-wildtype (red lines) non-enhancing gliomas. The shaded errorbars indcate the 
standard deviation across the groups. Note that IDH-wildtype histograms indicate that on 
average ASL-CBF, DSC-rCBV, and DSC-rCBF are higher than for the IDH-mutated histograms. 

Figure 2. Example MR images of an IDH-mutated (P09) and an IDH-wildtype glioma (P14). The 
white arrows indicate the IDH-wildtype glioma locations.   

Figure 3. Voxelwise correlation coefficients between ASL-CBF and DSC-rCBV (left) and DSC-rCBF 
(right) within non-enhancing gliomas. The spatial correlation between ASL-CBF and DSC-rCBF 
and DSC-rCBV are lower for the IDH-wildtype tumours (two-sample t-tests, p < 0.005).  
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Variable-density FSE with Compressed-Sensing for high-resolution multi-organ volumetric ASL perfusion 
 

Manuel Taso1, Li Zhao2, Arnaud Guidon3, Daniel V. Litwiller3, David C. Alsop1 
 

1MRI research division, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA ; 2Diagnostic 
Imaging and Radiology, Children’s National Medical Center, Washington, DC ;  3Global MR Applications and Workflow, GE 

Healthcare 
 

Introduction: While brain volumetric ASL is now routinely feasible, especially using Stack-of-Spirals Fast-Spin-Echo (FSE) or Gradient-
Spin-Echo (GRASE) imaging readouts as stated in the ASL consensus paper for neurological application1, the translation of 3D imaging 
to abdominal organs is challenging due to the presence of strong inhomogeneities in the body, limiting coverage to single or a few 
slices. Additionally, they suffer from loss of resolution either from blurring or off-resonance. Therefore, FSE using Cartesian encoding 
would be desirable, but its slowness is a major handicap. We report the development of a volumetric ASL sequence using Cartesian 
FSE encoding and Compressed-Sensing acceleration and present applications for brain and abdominal organs.  
 
Methods: We modified a commercially available segmented 3D-FSE sequence2 with 
variable refocusing flip-angles with a background-suppressed pCASL magnetization 
preparation and variable-density Poisson-disk sampling for k-space undersampling. 
This variable-density sampling combined a fully sampled 6x6 central region and variable 
outer k-space sampling. Furthermore, since multiple averages are usually collected to 
increase SNR, we took advantage of the temporal dimension to vary the outer k-space 
sampling across averages. We repeated 4 times an individual R=14.7 accelerated 
acquisition with the variable temporal sampling leading to an equivalent acceleration 
of R=4.3. We scanned 4 healthy volunteers for brain and 3 for abdomen (kidneys) on a 
3T GE Discovery MR750 with 32-ch head and body array coils. Common brain/abdomen 
parameters were: TR/TE=6200/10ms, 128x128 matrix, 64 coronal slices, bandwidth 31.25 kHz, separate acquisition of a reference 
PD-w scan without ASL preparation and solely parallel-imaging acceleration. All abdominal scans were performed using a timed-
breathing approach to mitigate motion and compared to a single-slice single-shot FSE. For the brain, we compared the VD-3D-FSE 
with a standard Stack-of-Spirals FSE (512 points, 8 arms, 3.6x3.6x4mm3 nominal resolution, same acquisition time). 
The CS reconstructions relied on the BART toolbox3. We estimated the coil-sensitivities for the PI-CS reconstruction using the ESPIRiT 
method4 on the reference acquisition (calibration region 323, cluster size k=63, 𝜎"#$%&&' =0.01 and threshold=0.8). Then, we performed 
a complex k-space subtraction of the control and label ASL data, followed by PI-CS reconstruction of that subtracted volume m with 
k-t sparsity enforcement of the data y by minimizing the L1-norm of spatial wavelets (Ψ) and L1-TV (l1=0.001, l2=0.05) using the 
ADMM algorithm (max. 100 iterations): 𝑚(𝑥, 𝑦, 𝑧, 𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝐷𝐹𝑆𝑚(𝑥, 𝑦, 𝑧, 𝑡) − 𝑦(𝑥, 𝑦, 𝑧, 𝑡)‖'' + 𝜆>‖Ψ𝑚(𝑥, 𝑦, 𝑧)‖> +

𝜆'‖TV𝑚(𝑡)‖> with D a sampling, F Fourier-transform and S ESPIRiT operators. 
 
Results: Brain imaging using the Cartesian VD-FSE provided high-quality images with 
minimal blurring compared to SoS-FSE. This can be seen when looking at the projection 
of cortical surfaces estimated on a T1-w volume on the ASL data, and confirmed by 
quantitative blurring analysis (data not shown). In the abdomen, we were also able to 
collect artifact-free, close to isotropic perfusion volumes covering the entire kidneys, 
allowing high-resolution multi-planar reformats that could not be obtained before. 
 
Discussion and conclusion: We successfully implemented a CS-accelerated volumetric 
ASL sequence using Cartesian imaging. This sequence presents significant advantages 
over more widely-used non-Cartesian or GRE-based sequences, especially for high-
resolution imaging with minimal blurring as seen in our brain experiments.  
For abdominal imaging, the variable density sampling in combination with 4D-CS 
reconstruction allowed collecting high-quality whole kidney perfusion images in a 
clinical compatible time of ≈4 min. Future developments should be focused on tackling 
the respiratory motion issue in abdominal imaging but also to add additional dimension 
undersampling (e.g. PLD) to allow fast and robust multiparametric perfusion imaging 
(blood-flow, transit-time) across different organs.  
 
References:  

1. Alsop, D. C. et al. Magn. Reson. Med. 73, 102–116 (2015). 2.Busse, R. F. et al. Magn. Reson. Med. 55, 1030–1037 (2006). 3. 
Uecker, M. et al. Proc. Intl. Soc. Mag. Reson. Med 2486 (2015). 4. Uecker, M. et al. Magn. Reson. Med. 71, 990–1001 (2014). 
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A Pipeline for ASL Quantification and Analysis using Inter-regional Differences and Support Vector 
Machine Learning: Application to Young Onset Alzheimer’s Disease 
Jack Highton (UCL), Dr Enrico De Vita (KCL), Dr Jonathan Schott (UCL), David Thomas (UCL) 
 
INTRODUCTION Arterial Spin Labelling (ASL) is a non-invasive MRI method to measure cerebral blood 
flow (CBF) with great potential to assist in early dementia diagnosis – which may allow emerging 
therapies to be administered earlier with greater effect. However, difficulties in quantitative consistency 
frustrate the development of robust ASL biomarkers. Here, ASL data acquired from patients with Young 
Onset Alzheimer’s Disease (YOAD) was analysed with an optimized processing pipeline, using both a 
novel region based statistical approach and voxel based machine learning. This is the first study to 
analyse ASL data from patients with Posterior Cortical Atrophy using machine learning, and the 
statistically significant results from both analysis approaches agree with previous perfusion studies, 
despite the limited cohort size. 
METHODS Following manual removal of motion corrupted data, the YOAD study cohort (age 51-70) 
consisted of: 22 healthy controls, 23 patients diagnosed with typical AD (tAD), and 10 with Posterior 
Cortical Atrophy (PCA). Structural T1 weighted images were acquired (MPRAGE, 1.1mm isotropic 
resolution, TR 2.2s, TI 0.9ms). Five ASL image pairs were acquired per subject (8-shot 3D GRASE, FAIR 
Q2 TIPS, 3.8×3.8×4.0mm, TI 2s, bolus length 0.8s). Using the same acquisition scheme, saturation 
recovery (SR) images were acquired with recovery times of 1, 2 and 5s, to fit M0 maps for calibration of 
the ASL data. After group-wise registration using the NiftyReg toolbox [1] CBF was quantified using 
Oxford ASL [2]. Separate CBF maps were calculated for grey matter (GM) and white matter (WM) using 
linear regression partial volume correction (PVC) [3]. The GM and WM CBF maps were normalised to 
remove inter-individual global perfusion differences. The MPRAGE images were parcellated into 8 ROIs 
using GIF [4] (see figure 1) which were transferred to the normalized GM perfusion images for analysis. 
Mean CBF values were computed for each anatomical region, with voxels containing a volume fraction of 
different regions handled in a similar manner to the PVC approach. In a simple comparison of regional 
CBF, significant differences between ROIs in control and dementia subject CBF maps are identified using 
a t-test (figure 1). In the novel approach proposed here, within-subject inter-regional perfusion differences 
are compared between control and dementia subjects (figure 3), using an inhomogeneous variance t-test 
[5]. As a second analysis, the PRoNTo toolbox [6] was used to train a classifier for each dementia type to 
predict whether a perfusion map belongs to that group or the control group. Via a binary soft support 
vector machine, this produced a weights map which reveals perfusion increases/decreases in a voxel 
linked to the disease.  
RESULTS The results (figure 1) show significant hypoperfusion linked to tAD in the external cortical lobes 
and hippocampus, as expected [7][8]. In PCA patients, hypoperfusion was observed in the temporal 
lobes, parietal lobes and hippocampus, agreeing with previous studies [9].The inter-regional analysis 
(figure 1) yielded significant results only for the tAD subjects, with the parietal lobe identified as a useful 
reference region. The machine learning analysis showed hippocampal and occipital lobe hypoperfusion 
linked to tAD (figure 2), and occipital lobe hypoperfusion linked to PCA (figure 2). 
DISCUSSION Overall, this study demonstrated that statistically significant regional changes in perfusion 
can be discerned in small groups of patients with young onset AD, with both traditional statistical methods 
and also with a machine learning algorithm usually applied to large datasets. The novel inter-regional 
analysis suggested the parietal lobe is the most useful benchmark region, to separate region specific 
hypoperfusion associated with tAD from global perfusion changes. 
CONCLUSION ASL is increasingly used as a secondary diagnostic for dementia, and a quantitative 
biomarker which can distinguish between different dementia types is desirable. This study confirms the 
perfusion patterns linked with two types of AD seen in previous work, and suggests pattern recognition 
and inter-regional comparison of perfusion changes as more robust biomarkers to individual variation.  
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Figure 1 -  Left: Basic regional statistical analysis. The colour scale represents the magnitude of statistically 
significant changes where the confidence interval was above 0.95, or 0.9 where there is an asterix. Right: A 
novel inter-regional statistical analysis, in which regional perfusion changes between control and dementia 
subjects are calculated, then statistically significant inter-regional differences in these values are sought. 
E.g. the difference in tAD linked CBF change between the insular and parietal lobe was positive (i.e. more 
hypoperfusion in the parietal lobe) was significant, with a confidence level of 0.97. 
 

  
 

 
Figure 4 -  Top left: classifier result yielding 86% accuracy. Bottom: the weights map from the tAD classifier 
training, showing the statistical importance of hypoperfusion in the hippocampus (area outlined green) and 
occipital lobe (blue).  Top right: the PCA classifier weights map, showing the statistical importance of 
hypoperfusion in the occipital lobe. 
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A novel technique to improve the reliability of pseudo continuous arterial spin labeling 
 

Matthias Günther1,2,3, Praveen Iyyappan Valsala1 
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Synopsis: Labeling performance of pseudo continuous arterial spin labeling (pCASL) is susceptible to the off-resonances introduced by 

B0 inhomogeneity and eddy current effects. Here, a short calibration approach using the recently presented ASL-IF (arterial spin labeling 

– input function) method [1] is used to maximize the labeling efficiency. Vessel-specific optimization can be achieved. Further 

optimizations like RF power deposition are possible, but typically not needed. This new calibration approach could pave the way for 

robust and reliable pCASL measurements in a clinical setup. 

Introduction: PCASL is the recommended labeling scheme for its high SNR [2]. However, off-resonance induced phase evolution of 

the transverse magnetization in-between the excitation pulses lead to reduction in the labeling efficiency. Also, inter-scan variability of 

the labeling efficiency influences reproducibility and reliability of the perfusion quantification. The earlier proposed methods involve 

long repetitive measurements to probe the phase offset of the system. Later, the measured phase offset is compensated in post processing 

by model fitting [3] or corrected in the future measurements by altering the RF phase or gradients [4,5]. In this study, we propose a 

quick calibration protocol which can measure and compensate the phase offset at higher precision within 10 seconds. 

Materials and Method: The capability of ASLIF method to sample the arterial input function (AIF) during the labeling process is 

utilized in this study. The arterial input function is modulated by phase offset of the labeling pulse and measured at the readout slice 

downstream to the labeling slice. In order to measure the labelling efficiency of several phase offset in a single experiment, the 

continuous labeling block is split into several short measurement blocks (see figure 1).  In addition to the phase of the labeling pulse, 

this method gives the possibility to optimize other protocol parameters like readout slice position, labeling and readout pulse power. 

 Data Acquisition: Experiments were performed on a clinical 3T MR-scanner (Magnetom Skyra, Siemens Healthineers, Erlangen, 

Germany). A perfusion phantom (Gold Standard Phantoms, London, UK) and three healthy male volunteers (age 26-35) were scanned 

to validate the method. An informed consent according the ethical standards of the university is signed by all the volunteers. The flow 

rate of phantom is set to 350 ml/min. An extended labeling duration of 6000 ms was used to cover the offset range of 320o with a 

resolution of 20o. 

Processing: The AIF signal is integrated over the time in each offset block. The measurement block with maximum AIF signal is 

considered corresponds to the optimal parameter. The data processing pipeline is implemented in the scanner to reconstruct the AIF 

readout data and automatically predict the optimal parameter in real time. 

Results: Figure 2 presents the results of the experiment on a perfusion phantom. The labeled bolus before and after optimizing the 

labeling pulse phase and the corresponding perfusion images are shown. 

Discussion: Typically, the labeled bolus reaches the readout slice in less than a few hundred milliseconds and it is measured in real 

time. Therefore, the time consuming elements like post labeling delay (PLD) and image acquisition during repetitive methods are 

avoided in this prescan routine. Furthermore, there is no model assumed and the combined effect of all the off-resonance sources are 

measured. Also, the dispersion of the signal due to the flowing spins at different velocities and the transit delay effects are minimal at 

the readout slice. This makes the method more reliable. A 10 s calibration scan is sufficient to optimize the phase offset of the labeling 

process. Further repetitions of the calibration scan (each lasting 10 seconds) may be performed to reduce SAR or to optimize other 

parameters of ASL-IF method. 

Conclusions: To conclude, the phase offset correction method 

proposed using the ASLIF technique is significantly faster and 

robust compared to earlier methods. The fully automatic 

implementation can be easily integrated into a clinical setup for 

reliable ASL measurement.  

References:  
1. Günther, M. in Proc.ISMRM. 26 0305 (2018),  

2. Alsop, D. C. et al. Magn. Reson. Med. 73, 102–116 (2015), 

3. Jung, Y. et al. Magn. Reson. Med. 64, 799–810 (2010),  

4. Luh, W.-M. et al. Magn. Reson. Med. 69, 402–410 (2013),  

5.  Jahanian, H. et al. NMR Biomed. 24, 1202–1209 (2011). 

Figure 1 The scheme of the calibration sequence is shown. In this 

illustration, the phase of labeling pulse is varied across the measurement 

block. 

Figure 2 The labeled bolus before and after optimizing the labeling 

pulse phase is plotted in the graph A. The signal axis is scaled by the 

labeling signal achieved by a hyperbolic secant pulse (Assumed as 

100%). The subfigures B and C show the perfusion images at sub-

optimal offset (00) and optimal phase offset (1600) predicted by the 

calibration scan respectively. The time shift of the optimized bolus is 

due to translation of the labeling slab towards the readout slice. The 

spikes in the boli are the result of signal separation error at the 

beginning and end of labeling. 
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Comparison of optimized pseudo-continuous arterial spin labeling protocols for cerebral blood flow 
measurements 

Joseph G. Woods1, Michael A. Chappell1,2, Thomas W. Okell1 
1Wellcome Centre for Integrative Neuroimaging, FMRIB, NDCN, University of Oxford, UK, 2Institute of Biomedical Engineering, University of 

Oxford, UK. Correspondence to jwoods@fmrib.ox.ac.uk 

Introduction There have been many different techniques proposed for estimating cerebral blood flow (CBF) using pseudo-continuous 
Arterial Spin Labeling (PCASL). However, it is still unclear which can yield the most accurate CBF estimates in a typical scan duration 
because previous studies have not rigorously optimized each technique and have only compared a limited selection of techniques.[1-3] 
Here, we optimize a wide range of existing techniques (Fig. 1) for CBF accuracy using a recently developed framework[4] and compare 
them using simulations and in vivo data. We also propose a new hybrid technique which benefits from the averaging of Hadamard-
encoding while also being able to use longer label durations (LDs). We demonstrate 
that the commonly held view that single-delay CBF estimates are more robust in a 
typical scan duration is not necessarily true. 

Theory It is often argued that acquiring data at an appropriate single post-labeling 
delay (PLD) will result in the most robust and reproducible estimates, because many 
averages can be acquired to improve SNR. This SNR improvement is expected to 
outweigh the potential errors from simplifications to the physiological model.[5]  

A more complex approach is to acquire data at multiple PLDs (and/or LDs) 
and to estimate both arterial transit time (ATT) and CBF at the same time by fitting 
a dynamic signal model to the data. This reduces the ambiguity of when the label 
reaches the tissue and starts to decay with tissue T1, but fewer averages at each PLD 
can be acquired. The PLDs can either be sequentially varied for each acquisition or 
the LDs and PLDs can be encoded into the PCASL pulse train using a Hadamard 
encoding scheme.[6,7] The latter technique has been suggested to be more efficient, 
but it is not clear if the shorter LDs available in Hadamard-encoded techniques limits 
CBF accuracy. 

Methods We optimized the LDs and PLDs of the protocols in Fig. 1 across an ATT 
range of 0.5 - 2 s using the Cramér-Rao lower bound (CRLB) framework in [4]. The 
framework aims to minimize the expected estimation variance (uncertainty) of CBF estimates by adjusting the protocol timings. Scan 
time 5 min, maximum LD 1.8 s, number of PLDs <10, variable-TR. The single-PLD protocol was LD 1.8 s, PLD 2 s. Monte Carlo 
(MC) simulations and in vivo experiments (10 healthy volunteers, background suppressed single-shot 3D GRASE) were performed. 
Gray matter data was fit for CBF and ATT using a variational Bayesian framework[8] with noninformative priors. Single-PLD fitting 
assumed an ATT of 1.3 s. Tissue T1=1.445 s, blood T1=1.65 s. The CBF and ATT posterior probability standard-deviations (SD) were 
used as a measure of uncertainty. Voxel-wise test-retest comparisons were performed by fitting the first and last half of each scan and 
calculating the root-mean-squared errors (RMSE) between these. Ground truth estimates were generated by fitting the combined data 
from all scans. 

Results and Discussion The posterior SDs for each protocol are shown in Fig. 2. The MC simulation SDs agree extremely well with 
the CRLB SDs, while similar trends can be seen in vivo. The Hadamard fixed protocol has the highest uncertainty while the Hybrid T1-
adj protocol maintains the lowest average uncertainty across ATTs. The free-lunch and T1-adj Hadamard protocols performed similarly 
well to the sequential protocol. The in vivo test-retest RMSEs are shown in Fig. 3. All of the multi-PLD protocols except Hadamard 
fixed have lower RMSEs than the single-PLD protocol, demonstrating their improved reproducibility. All of the Hadamard protocols 
produced more accurate ATT estimates than the sequential protocol (not shown). 

Conclusions We have shown that by appropriately designing and optimizing multi-PLD protocols, it is possible to produce similar or 
more robust and repeatable CBF estimates than a typical single-PLD protocol, while also providing ATT maps. We have also 
demonstrated that the short LDs and design rigidity in typical Hadamard protocols greatly diminishes the signal averaging benefit. The 
hybrid method is a promising alternative because it is able to take advantage of longer LDs, has more flexible timings, and has moderate 
Hadamard averaging. Using fewer encodes should also improve robustness to image corruption. 
References [1] Dai et al. MRM 2013; [2] Johnston et al. IEEE Trans. Med. Imag. 2015; [3] Guo et al. JMRI 2018; [4] Woods et al. 
MRM 2018; [5] Alsop et al. MRM 2015; [6] Günther ISMRM 2007; [7] Teeuwisse et al. MRM 2014; [8] Chappell et al. IEEE Trans. 
Sig. Proc. 2009. 

Fig. 2 CBF SDs: A) CRLB SD, B) median MC simulations posterior SD, C) median in vivo posterior SD. 
The in vivo data was plotted against the ground truth ATT estimates using a sliding window. 

Fig. 3: Test-retest CBF RMSE between 
each 2.5 min scan for each protocol. 

Fig. 1: Schematic of the protocols compared. 
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Perfusion Measurement in Brain Gliomas Using Velocity-Selective Arterial Spin Labelling: 
Comparison with Pseudo-Continuous Arterial Spin Labelling and Dynamic Susceptibility Contrast Perfusion 

Yaoming Qu1, Doris D. Lin2, Dapeng Liu2,3, Wenbo Li2,3, Peter C. van Zijl2,3, Zhibo Wen1, Qin Qin2,3   
1. Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; 
2. Department of Radiology; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; 
3. F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA; 
Introduction: Pseudo-continuous arterial spin labeling (PCASL) [1] has been shown to be an effective alternative to 
dynamic susceptibility contrast-enhanced perfusion weighted imaging (DSC-MRI) for evaluating vascularity in brain tumors 
[2-4]. Velocity-selective arterial spin labeling (VSASL) employing Fourier-transform based velocity-selective pulse trains is 
an emerging perfusion imaging method [5] with high sensitivity to perfusion signal. The purpose of this work is to evaluate 
the performance of VSASL on preoperative patients with gliomas by comparing with PCASL and DSC-PWI. 
Methods: This prospective study was approved by the 
local IRB. Patients with newly diagnosed brain tumors 
were recruited to undergo preoperative MRI between 
Nov. 2017 and Dec. 2018 using a 3T Philips Ingenia 
scanner. In additional to conventional anatomic 
sequences, each MRI consists of DWI (b=0, 
1000s/mm²) and 3 perfusion sequences including 
VSASL, PCASL and DSC-PWI. Both ASL and DSC-
PWI were acquired with echo planar imaging (EPI). 
VSASL and PCASL had post labeling delays of 1.5s and 
2.0s, as described in [5] and [6], respectively. Both ASL 
methods were acquired with 10 slices and a resolution 
of 3.3x3.0x4.4mm3 (4.8min). DSC-PWI was acquired 
with 24 slices and a resolution of 2.2x2.0x4.4mm3 
(2.5min). 
The voxel-wise CBF quantification of ASL data was 
processed in Matlab using standard equations [5][6]. 
The CBF maps of DSC-PWI were obtained using the 
software Olea Sphere (Olea Medical, France). Three 
representative 3×3 pixel regions of interest (ROIs) were 
manually chosen from tumor regions showing the 
maximal perfusion signal on CBF maps. For each 
method and each patient, the ratio of tumor blood flow 
(TBF) and contralateral normal-appearing grey matter 
blood flow (CBFGM) were compared. 
Results: 45 patients (Grade IV, N=15, 53±13yo; Grade 
III, N=6, 51±6yo; Grade II, N=24, 40±12yo) with a 
histopathological diagnosis of primary gliomas based on 
the 2007 WHO brain tumor classification were included 
in this analysis.  
Figs.1,2 show representative images with high and 
low glioma grades of FLAIR, DWI, and post-Gadolinium 
contrast T1w. CBF maps derived from VSASL, PCASL and DSC-PWI 
were largely comparable on visual inspection.  
Fig.3 shows linear regression and Bland-Altman analyses of the ratios 
of TBF over CBFGM, between PCASL, VSASL with DSC-PWI, 
respectively. Compared to PCASL (a,b), VSASL (c,d) demonstrated 
better correlation (R2=0.79 vs 0.52) and agreement with DSC-PWI. 
Both methods show good separation between low grade (grade II) and 
high grade (grade III & IV) tumors based on differences in tumor 
perfusion. 
Conclusion: VSASL shows great promise for accurate, noninvasive 
quantification of CBF in patients with glioma. With the advantages of 
insensitivity to transit delay and no need of prescribing a labeling 
plane, VSASL could potentially improve the diagnostic performance 
of ASL in preoperative grading of gliomas. 
References:  
[1] Dai, W, et al. MRM, 2008 60: p1488;  
[2] Järnum, H, et al. Neuroradiology 2010 52: p307;  
[3] Roy, B, et al. J Comput Assist Tomogr, 2013 37: p321;  
[4] Zeng, Q, et al. AJNR, 2017 38: p1876;  
[5] Qin, Q, et al. MRM, 2016 76: p1136;            [6] Alsop, D, et al. MRM, 2015 73: p102; 

Fig.1: A 34-year-old 
female with right frontal 
lobe glioblastoma 
(WHO Grade IV) 
showing DWI 
hyperintensity reflecting 
hypercellularity. CBF 
maps are comparable 
for PCASL, VSASL, 
and DSC-PWI, all 
revealing a thickened 
rim of increased 
vascularity around 
central necrosis, 
corresponding to the 
irregularly enhancing 
tumor. 
 
Fig.2: A 48-year-old 
male with right centrum 
semiovale diffuse 
astrocytoma  (WHO 
Grade II) that shows 
mild DWI hyperintensity 
associated with minimal 
contrast enhancement 
posteriorly. Higher 
perfusion signal, 
particularly within the 
posterior portion of the 
lesion, is depicted by 
PCASL, VSASL, and 
DSC-PWI. 
 

Fig. 3: Correlation (a,c) and agreement (b,d) of 
TBF-CBFGM ratios measured between PCASL 
(a,b) or VSASL (c,d) and DSC-PWI. 
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Non-contrast assessment of blood-brain-barrier permeability with water-extraction-with-phase-contrast-arterial-spin-

tagging (WEPCAST) MRI 
Zixuan Lin1, Yang Li1, Sandeepa Sur1, Jinsoo Uh2, Peiying Liu1, Pan Su1, Eboni Lance3, Matthias van Osch4, and Hanzhang Lu1 
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INTRODUCTION: Disruption of blood-brain barrier (BBB) permeability has been associated with numerous brain diseases. 
Conventional MRI approaches to image BBB permeability require the use of Gd contrast agent, which limits its clinical application. In 
this study we developed a new sequence, water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST) MRI, to assess BBB 
permeability to water by selectively measuring venous ASL signal. The work presented in this abstract includes sequence design, 
validation with contrast-based method, and applications in mild cognitive impairment (MCI) and sickle cell disease (SCD).  
THEORY: BBB permeability can be characterized by permeability-surface-area product (PS): 𝑃𝑆 = −ln(1 − 𝐸) ∙ 𝑓, where E is the 
extraction fraction of water in its first-pass and 𝑓 is cerebral-blood-flow (CBF)1. To measure E, we can use pCASL to label the water 
molecules in arterial blood. At capillary-tissue interface, most labeled spins are extracted to tissue (Fig.1, red), whereas non-extracted 
spins are drained directly to venous system (blue). Additionally, a small amount of labeled spins that are extracted to tissue will re-
exchange back into venous system (yellow). Then ASL signal at superior-sagittal-sinus (SSS) can be written as ∆𝑀 = ∆𝑀1 + ∆𝑀2 , 
where ∆𝑀1 = 2𝛼(1 − 𝐸)𝑀0,𝑏𝑙𝑜𝑜𝑑exp(−𝛿𝑣/𝑇1,𝑏𝑙𝑜𝑜𝑑)𝑐(𝑡)  represents non-extracted spins and ∆𝑀2 = 2𝛼𝑓/𝜆𝐸𝑀0,𝑏𝑙𝑜𝑜𝑑exp(−𝛿𝑣/
𝑇1,𝑏𝑙𝑜𝑜𝑑)𝑐(𝑡)⨂[𝑟(𝑡)𝑚(𝑡)]  represents extracted spins that were re-exchanged into vessel. 𝜆  is blood-brain partition coefficient, 𝛼  is 

labeling efficiency, 𝛿𝑣 is bolus arrival time (BAT) to SSS, 𝑐(𝑡) is arterial input function, 𝑟(𝑡) = 𝑒−𝑓𝑡/𝜆 is residue function and 𝑚(𝑡) =
𝑒−𝑡/𝑇1,𝑡𝑖𝑠𝑠𝑢𝑒 represents T1 relaxation.  
METHODS: Study I WEPCAST MRI sequence: To reduce the confounding contribution of tissue perfusion signal, we devised a new 
sequence, WEPCAST MRI, by adding a phase-contrast velocity-encoding gradient during acquisition of pCASL sequence. Images were 
acquired in mid-sagittal plane (N=6, 23±3yrs, 3F) with four long post-labeling-delays (PLD): 3000, 3500, 4000, 4500ms and encoding 
velocity of 15cm/s. Study II Acceleration: To expedite the acquisition, a background-suppressed Look-Locker readout was applied (LL-
WEPCAST) in coronal plane, allowing 8-PLD acquisitions in one TR (N=6, 28±8yrs, 3F). Results were compared with those from 
sequence in study I. Study III Validation: We sought to validate WEPCAST MRI by comparing its results with those from Gd-based MRI. 
WEPCAST MRI was performed (N=6, 34±15yrs, 5F), followed by a dynamic contrast-agent scan, in which 30 T1-weighted images 
(multi-echo VASO MRI sequence2) were acquired with Gd injection at the beginning of the 4th dynamic. Study IV Application in MCI: 
WEPCAST MRI was applied on 27 MCI patients (68±7yrs) and 20 controls (69±6yrs). PS of patients and controls were compared. 
Relationship between PS and cognitive test results and CSF biomarkers were examined. Study V Application in SCD: WEPCAST MRI 
was applied in SCD children (N=8, 10±1yrs), PS of whom were compared with adult controls. Association between PS and silent cerebral 
infarct (SCI) and neuropsychological scores were examined.  
RESULTS: Study I: Fig.2 shows representative control, label, and difference images of WEPCAST MRI at PLD=4000ms. Venous signal 
can be seen at SSS and tissue signal is well suppressed. Quantitative analysis of posterior SSS revealed an average E of 95.5±1.1% and PS 
of 188.9±13.4mL/100g/min, consistent with previous literatures3-5. Study II: Fig.3a shows images acquired with LL-WEPCAST. 
Averaged signal curves from two methods showed similar intensities and temporal characteristics. PS from two methods was in good 
agreement (R2=0.85). Study III: Fig.4 shows a scatter plot between PSWEPCAST and PSGd. WEPCAST MRI showed a strong correlation 
with Gd-based BBB method (R2=0.75 and p=0.025). Study IV: Fig 5a shows representative WEPCAST images in a MCI patient and a 
control subject. The patient revealed much less signal compared with the control. Statistical analysis showed that the MCI group had a 
significantly higher PS (i.e. leaky BBB) than controls (Fig.5b, p=0.04). Regression analysis also suggested that individuals with a higher 
PS tend to have a lower MoCA scores (poorer overall cognition, p=0.04), poorer episodic memory (p=0.005) and poorer language 
function (p=0.01). Higher PS was also associated with higher CSF Tau level (p=0.04) and lower Aβ42 level (p=0.09). Study V: Fig.6a 
shows representative WEPCAST images for a SCD child. Compared with healthy adult, SCD child revealed significant higher signal in 
SSS (p<0.001), lower extraction fraction (p<0.001) and slightly higher PS (p=0.50). Among SCD patients, higher PS was correlated with 
significantly lower hematocrit level (Fig.6b, p=0.02) and lower hemoglobin (p=0.02). Higher PS was also associated with a greater risk of 
SCI (Fig.6c, p=0.002) and attention deficits (p=0.003).  
CONCLUSION: In this study, we developed a new sequence, WEPCAST MRI, for assessment of BBB permeability to water without 
using exogenous contrast agent. The technique was applied to MCI and SCD patients to demonstrate its potential clinical utility.  
REFERENCES: 1. Crone, Acta Physio Scan, 1963. 2. Uh et al, MRM, 2009. 3. St. Lawrence et al, MRM, 2012. 4. Gregori et al, JMRI, 
2013. 5. Herscovitch et al, JCBFM, 1987.  

  
 

Fig.1 Model of water 
extraction across BBB.  

Fig.2 WEPCAST results. (a) Representative 
control, label and difference images. (b) SSS 
signal time course at different PLDs.  

Fig.3 LL-WEPCAST results. (a) Representative images. 
(b) SSS signal time course from two methods.  

Fig.4 Scatter plot of 
PS from WEPCAST 
and VASO methods.  

Fig.5 WEPCAST in MCI. (a) WEPCAST 
images of a MCI patient and a control. (b) 
Bar plot of PS for MCI and control groups.   

Fig.6 WEPCAST in 
SCD. (a) WEPCAST 
images of a SCD 
children and an adult 
control. (b) Association 
between PS and 
hematocrit in SCD. (c) 
PS of patients with and 
without silent cerebral 
infarct.    
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Quantification of CBF in glioblastoma multiforme; challenges of ASL calibration in the presence of oedema. 

Introduction: The ‘ASL white paper’ has been instrumental in reaching a consensus for both acquisition and analysis in the clinical 

setting1. However, as ASL continues to gain clinical traction, particularly within cancer imaging2-4, it is important to question 

whether the current recommended analysis pipeline is appropriate in patients with gross pathology. Here we assess the impact of 

calibration method in patients with glioblastoma multiforme (GBM); hypothesising that voxelwise calibration, as proposed in the 

White paper1, may confound results in the presence of oedema.  

Methods: Seven patients (4/3F, 59.7±12.6 years) with primary 

occurrence of GBM were imaged at 3T (Siemens Verio) prior 

to surgical resection, as part of the ongoing IMAGO trial, with 

institutional ethics approval. Acquisition: Whole-head T1-

weighted MPRAGE (with/without Gadolinium (Gd-HP-DO3A, 

ProhanceTM) TR/TE=1900/3.17ms, 0.7×0.7×1mm), and FLAIR 

(TR/TE=5000/495ms, 1.0×1.0×1.0mm) were acquired for 

tumour visualisation, and PCASL MRI (5 PLD:400-2000ms, TR/TE=5484/14ms, 26 slices, 3.4×3.4×5mm), including calibration 

(M0) image with matched parameters, minus labeling/background suppression. Analysis: ASL data were motion corrected5, and 

pairwise subtraction performed to create perfusion-weighted images, which were averaged across PLDs. A Bayesian nonlinear fit 

to the general kinetic model6 was used for voxelwise CBF quantification7, assuming α=0.85, and T1=1.3/1.65s for tissue/blood. 

Signal calibration was performed, both by voxelwise division of M0a (M0 of arterial blood, defined as M0/λ), and using a reference 

M0a value, assuming λ=0.9/0.82/1.15 for whole-brain/WM/CSF, and correcting for T2 differences between tissue types 

(T2=50/750/150ms for WM/CSF/Blood). We compared three calibration approaches: voxelwise (VW) calibration in line with the 

White paper1, mean M0a from a WM reference region (RRWM), 

and mean M0a from a CSF reference region (RRCSF). Tumour 

ROIs, were manually defined8 on enhancing post-Gd 

MPRAGE, with enhancing regions included only. 

Contralateral normal appearing GM and WM (NAGM, 

NAWM) ROIs were extracted using FAST segmentation of 

pre-Gd MPRAGE9 (partial-volume thresholded at 0.8 and 0.9 

respectively). CSF ROIs were manually defined from the 

ventricles on the M0 image to ensure pure CSF voxels. ROIs 

were transformed via linear registration to M0 and FLAIR 

images5, and mean CBF, M0 and FLAIR signal intensity 

calculated for each ROI. Statistics: Within-subject 

comparisons were made using a paired t-test, and multiple-

comparisons controlled for using Bonferroni correction. 

Figure 1) GBM shown in a representative patient. Quantitative CBF maps 

are shown for voxelwise, white matter (RRWM) and CSF (RRCSF) 

calibration, with hyperperfusion evident in the tumour rim.  

 

Figure 2 (A) Absolute CBF in grey matter, white matter and tumour rim 

for both voxelwise (VW), WM calibration (RRWM) and CSF calibration 

(RRCSF). (B) Tumour CBF Contrast is significantly higher for both RRWM 

and RRCSF than for voxelwise. Data shown as mean across subjects ± SD, 

* indicates p < 0.05 (paired t-test).  

 

Paula L.Croal1,2,  Flora Kennedy-McConnell1,2, Benjamin Harris4,5, Ruichong Ma4,  Stasya M. Ng5, Puneet Plaha4,6 Simon 

Lord4,5 Nicola R. Sibson3Michael Chappell1,2 

 

Results: FLAIR and M0 signal intensities were significantly elevated in tumour ROIs in comparison to NAWM (p=0.004, p=0.002 

respectively, Fig.1), with tumour contrast correlated between the sequences (r=0.78, p=0.039). Significant tumour CBF contrast 

(Tumour/NAWM) was observed for all calibration methods (Figs.1-2), with contrast significantly greater for both RRWM and RRCSF. 

Absolute CBFtumour was significantly higher with RRWM calibration in comparison to both VW (32.29±20.8%, p=0.03) and RRCSF 

(13.1±8.7%, p = 0.049) calibration (Fig.2). CBFNAWM was significantly lower with RRWM in comparison to VW calibration 

(9.1±2.5%, p<0.001), while CBFNAGM did not differ (Fig.2B). Both CBFNAGM and CBFNAWM were significantly lower with RRCSF in 

comparison to VW calibration (9.0±5.3%, p=0.02, and 19.1±8.2%, p=0.004, respectively).  

Discussion: Calibration method significantly affected absolute CBF; a significant loss of CBF contrast in tumours was evident when 

using voxelwise calibration, whilst the impact on absolute CBF was more variable. Results suggest voxelwise calibration is 

suboptimal due to reduced tumour contrast. However, it is less apparent whether CSF or WM is the appropriate alternative, whilst 

CSF calibration is likely more susceptible to coil sensitivity errors, recent findings suggest that NAWM may not be truly ‘normal’, 

with observed alterations in T2
10. From a clinical perspective, reduced sensitivity to tumour CBF in13. From a technical perspective, 

reference region calibration involves additional processing steps in comparison to voxelwise, however, these steps can be automated 

as part of existing pipelines14,15. the presence of oedema may negatively impact both grading, and assessment of peritumoural 

pathophysiology associated with tumour invasion and recurrence11- 

References: [1] Alsop et al., MRM, 2016 [2] Kim et al., Neuroadiology, 2017 [3] Dangouloff-Ros et al., Radiology, 2016 

 [4] Brendle et al., Clin. Neuroradiol., 2018  [5] Jenkinson et al., NIMG, 2002 [6] Buxton et al., MRM, 1998 [7] Chappell et al., 

IEEE Trans Signal Process, 2009 [8] Yushkevich et al., NIMG, 2006 [9] Zhang et al., IEEE Trans Med Imag., 2001 [10] Mehrabian 

et al., Proc. ISMRM, 2018 [11] Jarnum et al., Neuroradiol.,  2010 [12] Delgado et al., Neuro-Oncol.  

[13] Lu et al., Clin. Radiol., 2018 [14] www.quantiphyse.org [15] https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BASIL 
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System conditioning effects on temporal SNR and perfusion when computing GRAPPA
reconstruction coefficients for accelerated EPI-based PASL imaging

W. Scott Hoge1,2, and Jonathan R. Polimeni2,3

1Brigham and Women’s Hospital, Boston, MA, 2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts

General Hospital, Charlestown, MA, 3Harvard-MIT Health Sciences and Technology, Massachusetts Institute of

Technology, Cambridge, MA

Introduction: Accelerated parallel MR imaging (pMRI) can increase MRI temporal efficiency. With accelerated
echo planar imaging (EPI), pMRI can also reduce geometric distortions and image blurring due to T2* decay.
Both of these improvements improve spatial accuracy, but at the cost of non-uniform SNR loss due to g-factor
effects that depend the geometric layout of the receive coil array and acceleration rate. To date, mitigation of
SNR loss in pMRI have focused on SENSE [1, 2], in part because the SENSE linear system maps in a natural
way to cost-function minimization problems. System conditioning in GRAPPA [3] has received less attention, and
this work seeks to improve methods used to train GRAPPA reconstruction coefficients for accelerated 2D EPI
data. We examine both system normalization/preconditioning and simple Tikhonov regularization, and show that
appropriate levels of regularization in EPI-based ASL can improve the measured perfusion images.
Methods: GRAPPA estimates a fully-sampled set of k-space data from an under-sampled acquisition by estimating
missing data from a linear combination of neighboring data. This can be modeled as Kg = t, where t is the target
k-space data, K is an array composed of neighboring k-space data, and g is a vector of GRAPPA coefficients
that map a linear combination of K elements to the target data. The GRAPPA kernel itself extends by nx points
along the readout, ny points along the phase encode dimension, and c coils. This gives the length of g equal to
(nx ·ny ·nc). The number of rows in K is determined by the number times the kernel covers both source and
target data points in the calibration data, and is often over-determined with many more rows than columns.

To improve the linear system condition when calibrating a GRAPPA kernel, one can apply system precondi-
tioning [4] to normalize the signal level across rows of the system, via ψKg = ψt, where ψ is a diagonal matrix

with elements equal to the inverse of the L2 norm of the rows of the system matrix, ψii = 1/
√∑

j |Kij |2. As

most of the signal energy is concentrated in the center region of k-space, preconditioning can provide a better
signal-energy balance across all rows of the system. After forming the normal equations to produce a smaller
system matrix and reduce computational load, one can then apply Tikhonov regularization [4], which results in
the system equation: (KHψ2K + λI)g = KHψ2t.
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Figure 1: tSNR maps and perfusion images from R = 2
accelerated 3T PASL-based perfusion-weighted EPI data.

In-plane accelerated (R = 2) PASL perfusion-
weighted (3.4x3.4x4.0 mm, TR=3.2 sec, TE=13 ms,
64x64 matrix size, 24 slices, Q2TIPS labeling
(TI=1800 ms, 700 ms bolus), 52 control/label
pairs) EPI data were acquired in-vivo at 3T. Two
blocks of pre-scan calibration data were acquired
using conventional multi-shot EPI, with an op-
posite readout polarity for the second block for
Dual-Polarity GRAPPA (DPG) [5] ghost correc-
tion. Missing data in the accelerated EPI images
was also synthesized using DPG, to restrict con-
ditioning effects to a single system inversion. The
effect of the different system conditioning meth-
ods on the corresponding tSNR maps for each
application data set was illustrated, along with
the condition number, defined as the ratio of the
smallest to largest singular value, σmin/σmax, of the modified linear system.
Results: Fig. 1 illustrates that PASL is an application where improved system conditioning can be critically
important. Both tSNR and the associated perfusion-weighted images are shown. The top row shows a dramatic
boost in tSNR after normalization and regularization are applied, which correspondingly reduces speckle noise in
the low-perfusion regions in images on the second row.
Discussion and Conclusions: This study demonstrates that system conditioning approaches can have a positive
impact on temporal SNR when reconstructing accelerated EPI data. While the effects of regularization have
been previously investigated in the context of BOLD-weighted EPI [7], we have demonstrated here that perfusion
applications can also benefit.
References: 1. King, Angelos, ISMRM 2001; 1771. 2. Lin, et al, MRM 2004;51(3):559–567. 3. Griswold, et al, MRM 2002;

47(6):1202–1210. 4. Björck Å. “Numerical methods for least squares problems,” SIAM Press, 1996; 5. Hoge, Polimeni, MRM 2016;

76(1):32–44. 6. Triantafyllou, et al, Neuroimage 2011;55(2):597–606. 7. Polimeni, et al, MRM Med 2016;75(2):665–679.
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Optimization of Velocity-Selective-Inversion Arterial Spin Labeling with 3D Acquisition 

Dapeng Liu1,2, Wenbo Li1,2, Peter van Zijl1,2, Doris D. Lin1, Qin Qin1,2   
1. Department of Radiology; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 
2. F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA 
Introduction 
Velocity-selective ASL (VSASL) [1] technique has the advantages 
over the conventional method of insensitivity to transit delay and no 
need of prescribing a labeling plane. However, it has mostly been 
demonstrated with 2D acquisition for conventional velocity-selective 
saturation (VSS)  [1–6] and Fourier-transfer based velocity-selective 
inversion (VSI) [7]. Recently, VSI with low-flip-angle segmented 3D 
spiral acquisition was implemented for perfusion functional MRI [8]. 
The current work aims to optimize VSASL with 3D GRASE readout 
for baseline perfusion mapping. Comparisons with pseudo-
continuous ASL (PCASL) [9] are also performed. 
Methods 
All experiments were performed on a Siemens 3T Prisma scanner. 
Multi-shot 3D GRASE readout was implemented to achieve high 
SNR efficiency. Parameters were taken from [1,7] for VSASL and 
[9,10,11] for PCASL. 
We first optimized the post-labeling delay (PLD) for VSASL. Six 
PLDs (0.6, 0.9, 1.2, 1.5 and 1.8 sec) were compared for both VSS 
and VSI on two groups of subjects: 1) 20 ~ 35 yo, n = 5, 2 females 
and 2) 50 ~ 65 yo, n = 5, 3 females. Normalized perfusion signal, 
defined as difference between label and control divided by M0, was 
calculated as the indicator of signal sensitivity.  
VSS and VSI with the optimized PLD of 1.2 sec (see results) and 
PCASL with PLD of 2.0 sec were compared on the same two groups 
of subjects. In addition, they were also compared on a brain tumor 
patient (61 yo, male) with recurrent Glioblastoma (GBM). 
Results 
The normalized perfusion-weighted images of one middle slice from 
VSS and FT-VSI prepared ASL with 3D GRASE acquisition at 
different PLDs are demonstrated in Fig. 1a. Normalized perfusion 
signal in GM was plotted as a function of PLD from VSS and VSI 
(Fig. 1b, c). A PLD of 1.2 sec yielded maximal perfusion signal 
change among most of the subjects and was chosen for the 
subsequent VSASL scans.  
The normalized perfusion-weighted images from the middle slice of 
the five older subjects are arrayed in Fig. 2. Note that the PCASL 
result of the first male subject shows markedly diminished perfusion 
signal in the occipital lobes (red arrowhead), as an example of the 
possible sensitivity to transit delay. In contrast, VSASL results do 
not display such an artifact.   
The SNR in GM of FT-VSI based VSASL were 29.7% and 34.2% 
higher than PCASL and 27.6% and 29.5% higher than VSS-based 
VSASL, in the young and older groups, respectively (Fig. 3).  
Fig. 4 shows an example of CBF mapping of whole brain coverage 
using PCASL and VSI ASL of a patient with recurrent left occipital 
GBM (red arrow). The hyperperfused tumor is well depicted by both 

methods but 
VSI shows 
slighter higher 
signal than 
PCASL. 
 
Conclusion 
FT-VSI with 3D-GRASE readout was successfully implemented. FT-
VSI based VSASL showed higher sensitivity to perfusion signal than 
both PCASL and VSS based VSASL. The clinical prospect of VSASL 
with a 3D whole-brain coverage was demonstrated on a brain tumor 
patient.  
References 
[1] Wong, E, et al, MRM, 2006 55: p1334.  
[2] Duhamel, G, et al. MRM, 2003 50: p145.  
[3] Wu, C, et al. Neuroimage, 2006 32: p122.  
[4] Qiu, D, et al. JMR, 2012 36: p110.  
[5] Meakin, J, et al. MRM, 2013 69: p832.  
[6] Guo, J, et al. MRM, 2015 73: p1084.  
[7] Qin, Q, et al. MRM, 2016 76: p1136.  
[8] Hernandez‐Garcia, L, et al. MRM, 2019, DOI: 10.1002/mrm.27461.  
[9] Dai, W, et al. MRM, 2008 60: p1488.  
[10] Alsop, D, et al. MRM, 2015 73: p102.  
[11] Zhao, L, et al. MRM, 2016 78: p1342. 

 
Figure 1: (a): one-slice example of normalized 
perfusion signal from one subject comparing 
VSS and VSI; (b): normalized perfusion signal 
in GM as a function of PLD; (c): normalized 
perfusion signal as a function of PLD. 

 
Figure 2: Comparison of PCASL and VSASL 
using VSS and VSI in group 2 (only one 
middle slice shown).  

 
Figure 3: SNR in GM of all subjects: (a) group 
1 and (b) group2. 

 
Figure 4: Whole brain PCASL and VSI based 
ASL of a patient with recurrent GBM. 
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Impact of calibration methods and processing options on CBF quantification using ASL 
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Absolute perfusion quantification using ASL is highly dependent on a calibration procedure 

aiming at the normalization of the control-label difference images by the equilibrium magnetization 

of arterial blood. Although different calibration methods have been previously compared1–3, the 

various processing options that need to be made in their practical implementation are frequently 

disregarded and left unreported, compromising the utility of absolute quantification.  

In our work, we systematically compared different calibration methods and associated 

processing options in two multiple post-labeling-delay ASL datasets (PASL and pCASL). Only small 

differences were observed across the main calibration methods, based on a reference tissue (CSF, GM 

or WM) or on a voxelwise basis, when using specific carefully chosen options. However, when 

varying these options we found substantial discrepancies in CBF values. In particular, calibration 

methods based on CSF as a reference tissue were more sensitive to such options than the other 

methods. This is mostly due to the greater sensitivity of CSF measurements to RF field 

inhomogeneities, and also to T1 corrections given the much larger T1 value of CSF relative to GM and 

WM. Overall, the greatest sensitivity was found to correction for incomplete T1 relaxation, RF field 

inhomogeneities and the value of presaturation efficiency. In contrast, the values of brain-blood water 

partition coefficient and the degree of spatial smoothing applied to the calibration images or the mask 

used for the reference tissue had moderate to negligible impact.  

Our results support the use of a voxelwise calibration approach as proposed in the ASL white 

paper, due to its relatively low sensitivity to the various processing options. Nevertheless, regardless 

of the method chosen, our work highlights the need for the use of consistent calibration pipelines for 

CBF quantification, including a complete report of the associated processing options. 
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Accurate quantification of vascular territories using super-selective PCASL - Pitfalls and solutions  
 

Jonas Schollenberger1, C. Alberto Figueroa1,2, Luis Hernandez-Garcia1,3 
1Biomedical Engineering, 2Surgery, and 3FMRI Laboratory, University of Michigan, Ann Arbor, MI, USA 

Introduction: Perfusion measurements of vascular territories in the brain offer critical clinical information on 
cerebrovascular function. In regions of mixed perfusion, measurements of the fractional contribution of individual 
arteries is of particular interest. For example, in the presence of cerebrovascular occlusive disease, territorial 
perfusion fraction maps can be used to identify and evaluate collateral flow pathways.  

In super-selective pseudo-continuous ASL (SS-PCASL) [1], territorial perfusion images are acquired by creating 
a circular labeling spot which can be placed on individual arteries. However, when post-processing territorial 
perfusion images to calculate perfusion fractions maps, differences in labeling efficiency between labeled arteries 
can lead to significant inaccuracies. These differences can occur due to a mismatch between vessel and label 
spot (movement), off-resonance, or differences in blood velocities. In this work, we present a strategy to 
maximize labeling efficiency, account for differences between labeled arteries, and quantify territorial perfusion 
fractions. 

Methods: Territorial perfusion fraction maps 
were acquired in two healthy subjects. A multi-
phase pre-scan was collected to compensate 
for off-resonance in the label plane, which 
consisted of a non-selective PCASL with 
increasing RF-phase increments after each 
label/control pair. Cardiac-triggered SS-
PCASL images of all four neck arteries were 
subsequently acquired, using a peripheral 
pulse oximeter to trigger the start of the 
saturation pulse before the label train [2]. In-
between acquisitions, a 2D TOF of the label 
plane was collected to correct for vessel 
movement. Following, the labeling efficiency of 
each vessel was directly measured 2 cm above 
the label plane. Additionally, the blood velocity 
in the label plane was quantified with 2D PC-
MRI. Vessel-averaged labeling efficiency was 
obtained by compensating for T1-decay during 
transit and calculating a velocity-weighted 
average across the vessel. Perfusion fraction 
maps were generated by scaling each vessel 
selective subtraction image by its 
corresponding label efficiency and dividing it by 
the sum of all the vessel selective subtraction 
images. Finally, a 3D TOF of the neck and 
brain was collected for reference. 

 
FIG. 1: Axial TOF and corresponding perfusion fractions of neck arteries of 
two subjects. (a) Subject with a posterior circulation dominantly perfused by 
left VA. TOF confirms increased caliber of left VA (arrow). (b) Subject with 
absent basilar artery. Posterior circulation is primarily perfused by right ICA 
(Arrow indicates the presence of the right posterior communicating artery 
with an increased caliber). 

Results: Fig. 1 shows the resulting perfusion fraction maps for two subjects. Subject (a) revealed a posterior 
circulation dominated by the left vertebral artery. Subject (b) presented with a missing basilar artery. Blood flow 
to the posterior circulation was provided by the right internal carotid artery via the right posterior communicating 
artery. These findings are consistent with the 3D TOF images.  

Discussion and conclusions: The scaled perfusion fraction maps based on our proposed strategy showed the 
perfusion territory of each vessel clearly. In mixed perfusion territories, such as the posterior circulation, perfusion 
fractions were in line with TOF images. 

References:  [1] Helle at al. 2010;  [2] Li et al. 2018 
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Introduction: 
Acute ischemic stroke (AIS) patients with perfusion-diffusion lesion volume mismatch (i.e., penumbra) are more likely to benefit from 
endovascular thrombectomy [1]. Contrast-free arterial spin labeling (ASL) MRI techniques can provide cerebral blood flow (CBF) 
measures and show largely consistent results with dynamic susceptibility contrast-enhanced (DSC) perfusion in delineating 
hypoperfused brain regions in AIS. However, the precise hypoperfusion lesion and penumbra delineation in ASL images remains 
challenging due to low SNR and delayed arterial transit. In this study, we develop a deep learning-based model to identify the 
hypoperfusion lesions in ASL images, using the DSC-delineated perfusion lesions as the ground truth (GT), with the aim of aiding 
endovascular thrombectomy decision-making. 
Methods: 
157 AIS patients underwent 1-4 clinical stroke MRI on Siemens 1.5T Avanto or 3.0T TIM Trio systems using 12-channel head coils, 
providing 174 usable image datasets (1.5T: n=101; 3T: n=73). Pseudo-continuous arterial spin labeling (pCASL) with background 
suppressed 3D GRASE readout was used: TR/TE/label time/PLD=4000/22/ 1500/2000ms; FOV=22cm; matrix size=64×64, 26×5mm 
slices. Quantitative CBF maps were calculated from the pCASL images[2]. The Time-to-maximum (Tmax) map was generated from 
DSC and a threshold=6s delineated hypoperfusion regions. After thresholding, skull-stripping, CSF-masking, spatial smoothing, and 
clustering were applied, the final binary labels for perfusion lesions (Tmax≥6s) were used for training. 
HighRes3Dnet [3] with 20 layers and residual connections was used as the 
deep learning network. The network was trained on 2 Nvidia GeForce GTX 
1080 Ti GPUs via NiftyNet [4]. ASL and DWI images were the input, and 
the DSC binary mask was the GT. 48*48*48 volumes (batch size=4) were 
randomly extracted from 3D preprocessed images for training. Volume level 
augmentation was employed including rotation and random spatial rescaling. 
The dice loss function and Adam optimization method were used (learning 
rate = 0.0001, β1 = 0.9, β2 = 0.999 ). The total iteration number was 
30,000 to enable the training process to reach steady state.  
For both subsets, 10-fold cross-validation was used. For voxel-level 
evaluation, Dice coefficient was calculated for each subject, and the group 
Dice was calculated as the average of all subjects. For subject-level 
evaluation, first hypoperfused volume was calculated and compared with 
ground truth, then following the diffusion/perfusion mismatch criterion for 
endovascular treatment  [5] the suggestion was made based on both GT and 
the inference output, and the corresponding confusion matrices were 
calculated.  
Results and Discussion 
Fig1 shows 2 representative cases of prediction results. For the first case, 
the prediction result matches well with the GT. For the second case, false 
positive results are seen in the ventricle, which also has a low perfusion 
value. The group average Dice is 0.303 and 0.381 for 1.5T and 3T, 
respectively, which is relatively low since many cases have only 
background (no lesion), so one false positive voxel would result in Dice=0. 
In Fig2a, a strong correlation was observed between the hypoperfusion 
lesion volumes from the model inference and DSC (for 1.5T, y =
0.85x, r. = 0.50; for 3T,y = 0.99x, r. = 0.72). In terms of endovascular 
thrombectomy decision making, accuracy of 85% was achieved on both 
subsets (Fig. 2b). 
Conclusion 
In general, our model was able to find the hypoperfused region from ASL 
images, though lesions in ASL and DSC do not match completely. Along 
with ADC images, this model provided an accuracy of 85% (using DSC as 
the reference) in terms of penumbral volume estimation. With increasing 
training dataset, we expect the accuracy will continue to improve.  
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Imaging. 2010;32:1024-1037 
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Introduction: 
Multi-shot interleaved 3D acquisitions with Stack of Spirals (SOS) RARE or GRASE acquisition are widely used for Arterial Spin Labeling 
(ASL) perfusion imaging because they enable whole-brain coverage, support excellent background suppression, and provide excellent 
sensitivity. But their use for applications and approaches demanding higher temporal resolution are not possible. Stimulated and resting 
state perfusion fluctuation studies could benefit from improved temporal resolution through single-shot acquisitions. Acceleration of 3D 
acquisitions to single-shot would ideally not compromise mean blood flow measurement. Here we report an approximate golden angle 
spiral rotation strategy compatible with single shot imaging by compressed sensing reconstruction but also standard regridding 
reconstruction of multi-shot interleaves. Application of the sequence to quantification of resting state network fluctuations is 
demonstrated. 
 
Methods:  
A standard interleaved SOS RARE acquisition sequence was modified in 
two ways. First the spiral trajectory was modified to variable density for 
full sampling of the center of k-space in each arm and then 8 fold 
undersampling of the outer region. Second, the rotation strategy was 
modified both across shots and slice encodes. Between shots and 
between increments of slice encoding, the spiral gradients were 
rotated by an approximate golden angle (10p/13, i.e. 138.46°, because 
the rotation repeats after 13 rotations) (Figure 1). This rotation spreads 
undersampling gaps between the slice and spiral directions to improve parallel imaging while also adding an irregular sampling pattern 
that may assist with compressed sensing reconstruction. Twelve healthy volunteers were scanned with a GE 3 Tesla MR750 scanner using 
a 32 channel head array coil from Nova Medical. ASL studies were performed with pseudocontinuous labeling (1.8s labeling, 1.8s 
postlabeling delay), background suppression, and 32 centric ordered 4mm thick slices. Spiral gradient waveforms were 6.14ms in duration 
with echo spacings of 12ms. Label and control images were alternated and then rotations of the spiral encode patterns were performed 
after each pair. 39 rotations were performed corresponding to 3 averages of 13 rotations for a total scan time of 8 minutes. Complex k-
space subtraction was performed and fully sampled data were reconstructed by slice direction FFT followed by an in-plane non-uniform 
FFT (nuFFT). Coil sensitivities were estimated from this fully-sampled perfusion-weighted volume using ESPIRiT(1) (s=0.01, threshold=0.8) 
followed by  reconstruction of the 39 single-shot volumes using an L1-wavelet Compressed-Sensing (CS) reconstruction (l1=0.005, 100 
iterations) with the BART toolbox(2) under MATLAB. Single-shot time series were analyzed for resting state fluctuations(3) using a spatial 
Independent Component Analysis (ICA) using FASTICA. 
 
Results:  
3D CS reconstruction of the 39 individual shots was 
readily achieved in 1100 seconds on an iMac Pro (6-
core Intel Xeon W, 128Gb RAM) with a CPU-based 
parallelized implementation. Temporal averages of 
the single shot images (Figure 2-B) produced images 
with image quality close to the fully sampled 
acquisitions (Figure 2-A). ICA analysis of image time 
series extracted with good spatial resolution well-
known brain networks, such as default mode, motor 
and visual networks (Figure 2-C). 
 
Discussion and Conclusions: 
Building upon prior work using spiral rotations for 
flexible scan prescription of ASL perfusion(4) and golden angle stack of stars for ASL angiography(5), our approximate golden angle 
rotation strategy enables uncompromised time average perfusion with the option for accelerated reconstruction up to single-shot with 
the same data. This should add flexibility for fast ASL, multiple contrast ASL acquisitions such as time-encoded ASL, and studies of perfusion 
fluctuations and modulation. 
 
(1) Uecker M et al. Magn. Reson. Med. 2014 (2) Uecker M et al. Proc. Intl. Soc. Mag. Reson. Med. 2015 
(3) Zhao L et al. J Cereb Blood Flow Metab. 2017 (4) Li Z et al. Magn Reson Med. 2016 
(5) Zhou Z et al. Magn Reson Med. 2017  

Figure 1 - Illustration of k-space trajectory for (left) a single spiral k-space 
trajectory (center) 5 overlayed interleaves to demonstrate angular rotation 
filling of k-space and (right) the 3D sampling pattern illustrating rotation 
across slice encodes 

Figure 2 - A. Reconstructed average perfusion from the fully-sampled data; B. Temporal mean of the 
39 single-shot; C. Resting-state visual median network identified from the single-shot time series and 
ICA. 

19



 

4D Vessel-Encoded pCASL Angiography in a Five-Minute Scan 
 

S Sophie Schauman1, Mark Chiew1, Thomas W Okell1 
1Wellcome Centre for Integrative Neuroimaging, FMRIB, NDCN, University of Oxford, UK 

 

Introduction 
 

Pseudo-continuous arterial spin labelling (pCASL) can be used for angiography [1] but is often limited by long 
acquisition times. Although some undersampled acquisition methods have been proposed [2], limited amounts 
of work have been done utilising sparse reconstruction methods [3].  
 

Vessel-encoded (VE) ASL [4] is an extension to pCASL that provides additional information about cerebral 
haemodynamics by separating blood coming from different feeding arteries. However, it further increases scan 
time compared to standard pCASL. For example, to separate blood from three arteries, four images are 
required instead of the conventional two (‘tag’ and ‘control’), doubling the scan time. To fully sample k-space 
of a 4D three-vessel VE-ASL angiogram as presented here, would take over five hours. By using sophisticated 
reconstruction methods, we show that we can reduce the scan time to five minutes and maintain image fidelity. 
 

Methods  
 

As an initial proof-of-principle, one healthy volunteer was scanned on a 3T Siemens Verio scanner. The vessel-
encoding was a 4x4 Hadamard encoding scheme, encoding the right and left internal carotid arteries, and the 
basilar artery. Immediately following a 1 s ASL preparation module, a spoiled gradient echo sequence with a 
3D golden angle radial trajectory [5] (TE/TR = 5.9/11.6ms, FA = 7º) was acquired. 108 radial spokes were 
acquired during each readout period (1.2 s). The continuously acquired spokes were split into 6 frames 
(temporal resolution 210 ms). This was repeated 33 times for each encoding (total scan time 5:16 min) to reach 
594 spokes per frame (R = 97 at 1.1 mm isotropic resolution).  
 

The raw data was reconstructed frame by frame in MATLAB in a compressed sensing (CS) framework. The 
modelled acquisition operator took into account three components of the imaging system: 1. The vessel 
encoding that was imposed on the blood magnetisation, 2. The coil sensitivity profiles of the 32-channel head 
coil (estimated from the data itself using the adaptive combine method [6]), and 3. The imaging trajectory and 
image-to-k-space transformation which was implemented using the non-uniform fast Fourier transform (NUFFT 
[7]). The CS optimisation was performed using 
a non-linear iterative algorithm (FISTA [8]). 
 

Results 
 

A 60% increase in SNR was observed for the 
CS reconstructed images compared with 
reconstruction using simple re-gridding and 
coil sensitivities only (Figure 1). Figure 2 
shows the frame-by-frame CS reconstruction. 
Although the SNR is lower in the later frames 
the distal vessels can still be resolved. 
 

Discussion and Conclusion 
 

As a proof-of-principle, the results are very 
promising with sharp delineation and well-
separated vessels. Further development of the 
method will require optimisation of the 
reconstruction as the current reconstruction 
took >24h.  A five-minute VE 4D scan is, 
however, a step towards making non-contrast-
enhanced dynamic angiography clinically 
feasible. 
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Figure 2 – Temporal dynamics of bolus of labelled blood through arterial tree 

Figure 1 – Above: Simple re-gridding reconstruction (temporal average MIP). 
Below: CS Reconstruction. The red arrows indicate a labelling plane  artifact. 

20
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Introduction: The measurement of Cerebral Blood Flow (CBF) using Arterial Spin Labelling (ASL) has seen a 
renewed interest following the publication of the Position Paper providing a set of clear guidelines on how to 
perform an ASL experiment1. In particular, it has been shown to be valid as a biomarker of neurological disease 
onset2 and response to therapy3. Indeed, based on numerous reproducibility studies4, the coefficient of variation 
of CBF has been well established, enabling its use as a biomarker in cross-sectional studies5. However, while the 
sources of potential physiological confounds are well established6, it has so far not been possible to compare all 
ASL implementations depending uniquely on potential hardware differences. 
In this study, we set out to assess the effective reproducibility of CBF estimates by ASL using a recently 
developed Perfusion phantom7 at 11 different sites with a range of scanner manufacturers (total 17 systems). We 
present here the preliminary data from the first 5 scanners from 3 sites working on Philips 3T MRI scanners with 
the same software release (R5.3). 
Materials and Methods: A perfusion phantom was transported by car to 3T MRI imaging centres in the 
Netherlands over the course of a week and scanned on 5 Philips 3T MRI systems running software release R5.3 
(3 Ingenia, 2 Achieva). ASL measurements were made using the product ASL sequence, comprising 
of pCASL labelling with a 4-shot 2D-EPI segmented acquisition (detailed in Figure 1.b), including an 
acquisition with a long-TR and without background suppression or labelling pulses for an M0 image, 
followed by 3 repetitions of control-label pairs. Measurements were made at two volume flow rates; 
200ml/min and 350ml/min. At each site, care was taken to ensure the phantom was reproducibly 
placed on the patient couch (see Figure 2), and the FOV was centred at a landmark at the centre of 
the porous material and rotated into alignment with the phantom. 
Analysis was performed in Matlab R2016b (The Mathworks, Natick, MA, USA). Dicom images were 
converted to NIFTI using dicm2nii8, and CBF maps calculated using the single subtraction equation 
for pCASL1, with λ=0.32 corresponding to the phantom’s porosity (void volume). The M0 image was 
registered to a structural atlas image of the phantom, from which an ROI mask of the entire porous 
material was generated. The mean CBF and standard deviation within this ROI were then calculated.  
Results: Figure 3.a shows representative CBF maps of the fifth slice from each data set. Figures 3.b 
and c show the CBF value distributions within each mask for MRI System 5. The mean CBF values 
and standard deviations within each mask for each system and flow rate are shown in Figure 4.a and 
b. Across all systems, the mean CBF was 33.7±3.1 ml/100g/min at 200ml/min, and 76.7±9.0 ml/100g/min at 350ml/min. 
Discussion: Across MRI systems, the coefficient of variance of the mean CBF was 9.2%/11.7% at 200/350 ml/min. As Figure 3.b and 3.c show, the actual 
voxel value distributions within the masked regions are complex and simple mean/standard deviation statistics do not capture this, leading to an 
underestimation in the perfusion signal CBF, and perhaps underestimation of the differences between MRI systems. At the higher flow rate the difference 
between systems in both the mean CBF and standard deviation of CBF is greater. In particular, System 2 shows a mean CBF and standard deviation that is 
noticeably higher than the other four systems. Possible reasons for this might be better labelling efficiency, or this could be a receive coil effect as this was 
the only system using an 8-channel head coil. No repeat measurements were made at each site, so there is no metric of intra-session variability which might 
also explain some of the variations observed between systems. 
Conclusion: We have presented a multi-site assessment of 2D-EPI pCASL measurements on Philips 3T MRI systems running the same software version, 
using a perfusion phantom. In general, measurements made across all systems are in good agreement with each other; however, further analysis and 
measurements are required to determine a statistically significant difference between systems. 
Acknowledgements: Anita Harteveld (UMCU, Utrecht, Netherlands) for time and assistance scanning. Pieter Vandemaele (Ghent University, Ghent, Belgium) for advice on standardised phantom 
positioning. 
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366, 2011. 4. Mutsaerts, et al. Neuroimage 113, 2015. 5. Sullivan, et al. Radiology. 2015 Dec;277(3):813-25. 6. Clement, et al. JCBFM, 2018 Sep;38(9):1418-1437. 7. Oliver-Taylor A et al. Proc. 
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Imaging Parameter Value 
Label Duration 1800ms 

Post Labelling Delay 1800ms 

Label Plane Location 
60mm from centre of FOV, 

parallel alignment. 
No. dynamics 3 

No. shots 4 
SENSE factor 2.3 

FOV 256x192x59mm 
PE Direction AP 

Acquisition Matrix (per slice) 128x96 
No Slices 12 

Slice thickness/gap 4mm/1mm 
TR 5000ms 

TE 

Min TE selected, given per 
MRI system 1-5: 11.271, 
10.166, 11.283, 11.269, 

10.16 ms 
Background suppression 4 pulse product default 

Figure 1: ASL sequence parameters. 

Figure 2: The perfusion phantom consists of an MRI compatible 
pump that delivers a liquid at a controlled flow rate to a perfusion 
chamber. The liquid is distributed in a ‘vascular’ network to a 
porous material cylinder that simulates the capillary bed of 
diameter 116mm and height 28.5mm. 

Figure 3: CBF maps of slice 5 at each flow rate in each data set from all systems (a). 
Histograms of the CBF value distributions within the mask at a flow rate of 200ml/min (b) 
and 350ml/min (c) for MRI System 5. There are two components: a Gaussian distribution 
centred around zero, due to noise in voxels where there is no perfusion signal; and a 
broader, nonzero centred Gaussian distribution of values from the perfusion signal. 

Figure 4: Mean CBF 
(a) and standard 
deviation of the CBF 
values (b) within the 
porous material masks. 
Trends in variation 
between the MRI 
systems visually 
correspond at flow 
rates, with variation at 
the higher flow rate 
more pronounced. In all 
cases, the mean CBF at 
350ml/min is more than 
double what is 
measured at the 
200ml/min, despite the 
flow rate ratio being 
1.75. This is because at 
200ml/min not all of the 
labelled bolus has 
reached the porous 
material at 
PLD=1800ms. 
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Introduction: Arterial spin labeling (ASL) is a powerful MRI technique with great clinical promise. There are, however, 
technical obstacles which have limited translation of ASL into clinical practice. Deep learning has tremendous potential for 
overcoming many of these such as outlier detection1 and averaging2 of ASL images, but there remain formidable challenges 
before this branch of artificial intelligence can have a clinical impact3. The purpose of this study is to establish the 
feasibility of using either a 3D or 2D convolutional neural network (CNN) to predict cerebral blood flow (CBF) maps from 
multiple input channels of difference images, each produced using a different post-label delay (PLD). Such a model would 
effectively learn features that reflect the ASL kinetic model and thereby produce CBF maps more rapidly and robustly 
which is critical in clinical applications. 
Methods: Based on our previous work on multi-PLD ASL4, we generated 98 in silico ASL datasets with 6 PLDs in which 
the ground-truth CBF images were generated a priori. For the 3D CNN model, data were split into training (n=66), 
validation (n=12) and test (n=20) datasets. Training data was augmented by flipping each image in the left/right direction. 
We implemented the CNN in Python 3.6 using the Keras and Talos libraries. As a proof of principle, this abstract focused 
on CBF maps only (ATT mapping results not shown). Optimal hyperparameters from the 3D CNN were used identically 
with the 2D CNN to facilitate model comparison. The CNN architecture included 4 convolutional layers using a 3x3(x3) 
kernel size producing 32 feature maps per layer, batch normalization, a leaky ReLU activation (alpha = 0.225), and a 
dropout layer (0.16). The final model layer consisted of a single feature map, which is the predicted CBF map from all the 
PLD images. Performance was evaluated using root mean square error (RMSE) and generalized Jaccard index.  
Results: Figure 1A shows the test performance for the 2D and 3D CNN models. The 3D CNN outperformed the 2D model 
in both metrics. Figure 1B shows three predicted CBF maps with highest RMSE (poor cases) and Figure 1C shows the three 
predictions with lowest RMSE (best cases); in each pair of images, left is the ground-truth and right is the prediction. These 
figures highlight the high similarity between ground-truth and predicted CBF maps in our test datasets.   
Discussion: We developed a CNN model to generate CBF maps from multi-PLD ASL difference images. Our model has 
two advantages: 1) CBF can be computed in less than one second (compared to minutes for kinetic model fitting), 
conducive to in-line processing on the scanner; and 2) a CNN model can be agnostic to the schedule of PLDs. Future 
developments will include multi-output predictions (i.e. CBF and ATT maps) and accommodate missing input ASL data.  
References: 
1. Kim KH, et al. Radiology. 2018 May;287(2):658-666.  
2. Owen D, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018.  
3. Zaharchuk G, et al. AJNR Am J Neuroradiol. 2018 Oct;39(10):1776-1784.  
4. Buxton RB, et al. Magn Reson Med. 1998 Sep;40(3):383-96. 
5. Shirzadi Z, et al. J Magn Reson Imaging. 2018 Mar;47(3):647-655. 
 

 
Figure 1: CNN model performance on test data computed using RMSE and Jaccard index (A). Comparison between 
ground-truth and predicted CBF images; B) three poor cases and C) three good cases. B and C obtained from 3D CNN.  
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Introduction: Reestablishing impaired blood flow to the injured spinal cord is a crucial target for acute clinical care.  
However, perfusion MRI methods for noninvasive monitoring of spinal cord blood flow are lacking despite their prominence 
for the brain. In part, the challenges of spinal cord MRI have complicated perfusion MRI in this organ [1-4]. The purpose of 
this study was to evaluate flow-sensitive alternating inversion recovery (FAIR) for quantifying spinal cord blood flow (SCBF) 
and its potential as a marker of injury severity.  

 Methods: Spinal cord contusion injury was induced at the T10 thoracic vertebral level in 38 female Sprague-Dawley rats: 
sham (n=8), mild (n=10), moderate (n=10), or severe (n=10), and imaging was carried out at 24 hrs post injury on a Bruker 
9.4T MRI system. FAIR-images were acquired using a 4-shot EPI readout (TE=18 ms; Constant recovery=3000 ms; Slice 
thickness=2 mm; In-plane resolution=165 µm2) with 10 inversion times (TI=50 ms to 7500 ms). A single-slice FAIR with 
axial inversion slab was used as 
the reference standard compared 
to prior studies [5,6], and multi-
slice axial or coronal (orthogonal) 
inversions were also examined 
similar to OPTIMAL FAIR (Fig. 1) 
[7]. T1 maps were generated for 
the selective (T1ss) and non-
selective inversions (T1ns) and 
SCBF maps (mL/100 g/min) were 
obtained using the equation (1/T1ss 
= 1/T1ns + f/λ). The relationship 
between MRI metrics and 
behavioral assessments for 
locomotion (Basso, Beattie and 
Bresnahan score; BBB) were 
investigated using Person’s correlations [8]. 

Results: With increasing severity of the injury, SCBF values were 
lower at the injury epicenter in both axial and coronal inversion 
schemes while T1ss and T1ns values increased (Fig. 2). Multi-slice 
results presented relatively lower SCBF regardless of inversion 
orientation and greater SCBF variability. While no significant 
correlation between SCBF and BBB score were observed, a 
strong positive correlation was shown between T1 and BBB 
scores at 30 days after injury (R2=0.66; p<0.0001).  

Conclusion: This study accessed the feasibility of spinal cord 
FAIR as a MR biomarker of spinal cord injury, showing that SCBF 
at the injury epicenter decreased with increasing injury severity.  
Likewise, single-slice axial FAIR has the largest SCBF and 
reliability. Interestingly, both T1ss and T1ns values at the acute 
stage of injury were strong predictors of outcome. The limitation 
of FAIR spinal cord imaging is the variability in SCBF estimation, partly due to motion artifacts since the acquisition was not 
respiratory gated, and the single-slice limitation.  Other ASL techniques, including pseudo-continuous and velocity-selective 
tagging, are currently in development for the animal MRI system, compared to SCBF with single-slice imaging.  

Acknowledgements: This work was supported in part by Merit Review Award I01 RX001497 from the US Department of 
Veterans Affairs Rehabilitation Research and Development Service and by the National Institutes of Neurological Disorders 
and Stroke R01 NS109090. 
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Figure 2. Single-slice axial inversion FAIR images 
(TI=250ms) at the injury site, as well as T1ss, T1ns, and 
SCBF maps of a severe and sham. 

 
Figure 1. Axial and coronal inversion schemes on T1 FLASH scans. For multi-slice 
FAIR images, the injury epicenter is located at 5th slice in this example (Red: 
Inversion planes; Yellow: Imaging slices; Blue: FOV saturation planes). 
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Introduction: Covariance mapping is one form of neuroimaging connectivity analysis. This approach exploits subject-to-
subject differences, most commonly applied in anatomical MRI. Although much work has been done to characterize regional 
perfusion in clinical and healthy populations, use of perfusion covariance is limited. Cerebral perfusion is closely linked to 
both neuronal activity and metabolism, and can be quantitatively measured using arterial spin labelling (ASL) MRI. This 
study uses ASL to evaluate network-like perfusion patterns of inter-subject covariation. We compare these patterns between 
healthy controls and a cohort of adolescents with bipolar disorder (BD: a severe psychiatric condition associated with 
anomalous cerebral structure and perfusion). We assess seed-to-voxel perfusion covariance (as well as “paired” anatomical 
covariance) based on three regions of interest known to be affected in BD. 

Methods: On a 3T MRI system using an 8-channel-receiver head coil, we collected perfusion images with pseudo-
continuous arterial spin labeling in 72 adolescents with BD and 57 healthy controls. Anatomical T1-weighted (T1w) imaging 
was performed with a high-resolution fast field echo acquisition (TR/TE=9.5/2.3 ms, spatial resolution 0.9✕0.7✕1.2 mm, 
FOV 240✕191✕168 mm, scan duration 8 min 56 s). ASL MRI was performed with a single-shot two-dimensional echo 
planar imaging acquisition (TR/TE=4000/9.6 ms, spatial resolution 3✕3✕5 mm, FOV 192✕192✕90 mm), 1650 ms labeling 
duration, 1600 ms post-label delay, 35 control-label pairs, and a scan duration of 4 min 48 s.  We used in-house preprocessing 
pipeline for motion correction, calculation of perfusion-weighted volumes, removal of corrupted volumes, and absolute 
perfusion quantification [1]. T1w images were aligned to a custom adolescent anatomical template with non-linear 
registration. Perfusion images were linearly registered to the subject-space T1w images and non-linearly warped to the 
template. To reduce the number of distinct perfusion brain regions, we used a parcellation technique that combined individual 
voxels through a hierarchical clustering. Then, with both perfusion and grey matter parcellated images, the following steps 
were taken for each of the three seeds: covariance maps were computed by calculating the seed-to-voxel correlation 
coefficient between the seed and every other region. BD and control covariance maps were generated separately. Correlation 
coefficients were transformed using Fisher’s r-to-z transform. Significance of the Z-statistic for the difference between BD 
and controls was assessed using FDR correction and ɑ=0.05. We evaluated the association between perfusion and structure by 
computing the correlation coefficient between whole-brain region-to-region covariance matrices.  

Results: Relative to controls, the BD group exhibited both increased and decreased perfusion covariance with the subgenual 
ACC seed. The BD group also exhibited increased structural covariance with both the ACC and amygdala seeds. Figure 
shows regions where covariance was significantly different between BD and control groups. There were significantly (p < 
0.0001) stronger associations between structural and perfusion covariance in BD (r = 0.17) compared to controls (r = 0.13).  

Discussion: ASL-based perfusion covariance can probe underlying 
physiology-based connectivity, akin to BOLD-based amplitude of 
low-frequency fluctuation and single-photon emission computed 
tomography studies [2,3]. A growing number of ASL studies now 
investigate perfusion covariance to capitalize on the potential 
between-group static neurovascular differences [4,5]. Relative to 
controls, perfusion in BD was found to covary more strongly 
between the subgenual ACC and temporal regions; the former is 
known to play a role in emotional regulation during depression and 
the latter in emotional processing. We also found a stronger 
structural covariation between the amygdala and the cuneus in the 
BD group; grey matter of both regions has been shown to differ in 
a comparison of BD subtypes characterized by level of episodic 
mood elevation. Future work will investigate differences across BD 
subtypes and symptomatic states. Overall, the regions implicated 
by this covariance method suggest a mood-related axis along which 
perfusion and structure are more tightly coupled between regions. 
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Introduction 
MR sequence development is typically performed with vendor-specific software, which require calculations and preparations of 
different hardware events to be in a specific order to take account of the parameter dependencies. Self-written MR sequences 
cannot be ported easily to other scanner platforms (even to other software versions) and thus are difficult to be utilized for multi-
center studies. Different solutions have been presented [1-5], however, protocols cannot be dynamically changed during 
measurements and/or further compilation steps are necessary. We are currently developing a platform-independent rapid 
prototyping environment for MR sequences to overcome this limitation [6-9]. A demo-tool [8] of our framework was presented that 
allows for quick preparation and visualization of protocols, which can be exported as the pulseq-sequence file format [4]. 
This abstract shows how sequence programming works by using the modularity of this framework concept. A pseudo-continuous 
arterial spin labeling (pCASL) sequence is created from a conventional pulsed ASL (PASL) sequence by adding/removing one 
submodule without worrying about other parameters such as time dependencies. 
Methods 
The sequence structures of the PASL and pCASL sequences are shown in Figure 1. The 3D-GRASE [10,11] readout is further 
composed of different submodules (fat saturation, spin echo, EPI readout, etc.), but will not be discussed here. The different 
modules need input data to be prepared (e.g. the saturation module requires start time, slice and gradient properties, number of rf 
pulses), but also provide some information/output (time interval after the last saturation pulse, which is necessary for the 
preparation of the background suppression). 

 

 

 

 
PASL: The PASL preparation module consists of different submodules. After inversion with a FOCI [12] pulse (FAIR), the readout 
volume is saturated using three saturation pulses with subsequent spoilers. Two background suppression FOCI pulses are applied 
during the inversion time TI = 1.7 s to suppress signal coming from tissue with T1 = 700 ms and 1400 ms (BS). Q2TIPS pulses are 
applied for bolus saturation (Q2TIPS) before the readout. 
pCASL: The pCASL preparation can be created from the PASL module by removing FAIR and adding the pCASL Pulses module.  
Parameters of the 3D-GRASE readout are set as follows: TR = 4 s, TE = 50 ms, flip angles = 90° and 120° for spin echo pulses, 
readout bandwidth = 2000 Hz/px, field-of-view = 256×256×64 mm3, matrix size = 64×64×16, EPI factor = 64, turbo factor = 8, which 
results in 2 segments for one image. Human brain measurements were performed on a whole-body MR scanner at 3 Tesla 
(MAGNETOM Skyra, Siemens Healthineers, Erlangen, Germany) with a 16-channels head coil. 
Results & Discussion 
Two exemplary slices of the PASL sequence are shown in Figure 2 acquired with one 
prescan and four averages resulting in a total measurement time of 68 seconds. The 
sequence preparation time was about 10 seconds. Future work will focus on 
accelerating the preparation and to implement further modules into gamma-star (γ*) so 
that the MR community can make use of it. 
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Figure 2: PASL measurement of the human 
brain with two exemplary control (upper 
row) and perfusion-weighted (lower row) 
images. 

Figure 1: Sequence structure of a conventional PASL and pCASL 
sequence. The ASL preparation modules consist of further submodules, 
which can be easily exchanged. By adding the pCASL pulses and 
removing the FAIR module, a pCASL sequence can be quickly generated 
from a PASL sequence without changing other parameters. 
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INTRODUCTION: Cerebral blood flow (CBF) refers to the amount of blood supply to brain tissue and has been suggested to be a 
potential biomarker in various diseases such as Alzheimer’s disease1 and stroke.2 With the emerging of arterial-spin-labeling (ASL) MRI, 
routine non-invasive measurement of CBF has been made feasible.3 However, one remaining issue with the CBF measurement is the 
considerable inter-subject variations even in the healthy population, which have been reported to be 16-20%.4 These variations may 
obscure the interpretation of CBF data and weaken the power of CBF as a biomarker. Therefore, it is essential to investigate the 
physiological sources underlying the inter-subject variations in CBF. In this work, we examined the extent to which end-tidal CO2 (EtCO2) 
can explain the inter-subject variations in CBF. In addition, we also studied the potential effects of other physiological parameters, 
including age, gender, hematocrit (Hct), arterial oxygenation (Ya) and heart rate (HR), on CBF. 
METHODS: Participants: Fifty-seven elderly subjects were recruited, of which 21 were cognitively normal, 32 had mild cognitive 
impairment (MCI) and 4 were mild dementia patients. The demographic characteristics of the subjects are shown in Table 1. 
MRI experiments: All subjects were scanned on a Philips Achieva 3T scanner. The MRI protocol consisted of a magnetization-prepared 
rapid acquisition of gradient echo (MPRAGE) sequence, a 3D ASL sequence with pseudo-continuous labeling (pCASL) and background 
suppression, and a separate proton density (M0) sequence. Scan parameters of MPRAGE were: voxel size=1×1×1mm3, 160 sagittal slices, 
TR/TE/TI=8.1/3.7/1100ms, flip angle=12°, shot interval=2100ms, duration=4min. Sequence parameters of ASL included: field of view 
(FOV)=205×205×125mm3, 39 axial slices, voxel size=3.2×3.2×3.2mm3, TR/TE=6185/9.3ms, labeling duration=1800ms, post labeling 
delay=2200ms, scan duration=3.3min. The M0 sequence used the same parameters except TR=10s and scan duration=50s. During the 
ASL scan, EtCO2 was measured via a nasal cannula connected to a capnograph device. Ya and HR were measured twice before the MRI 
scan and twice after the MRI scan. Hematocrit was measured through a blood draw. 
Data processing: The ASL data were processed using a cloud-based tool, ASL-MRICloud.5 Briefly, after motion correction, pairwise 
subtraction between the control and labeled images was conducted. The resulting difference images and the M0 images were used to 
quantify the voxel-wise CBF values based on the model provided in the ASL white paper.3 Whole brain CBF was calculated as the mean 
absolute CBF values inside a brain mask, which was obtained from the MPRAGE images using a T1-based multi-atlas brain segmentation 
tool in the MRICloud platform.6 The brain mask included white and gray matters as well as ventricles. 
Statistical analysis: We firstly performed stepwise regression analyses on the whole group (N=57) in which whole brain CBF was the 
dependent variable and the candidate independent variables were Hct, EtCO2, gender, Ya and HR. Age was always included in the model. 
The independent variables were added to the model in a stepwise manner, starting from the most significant one until no more variables 
reached a P<0.05. Then, to examine if the obtained regression model reflected normal physiological or pathological effects on CBF 
variations, we repeated the same stepwise regression analysis on the subgroup of cognitively normal subjects (N=21). 
RESULTS: The mean Hct, EtCO2, Ya and HR of the subjects are shown in Table 1, no significant difference was found among subgroups. 
We divided the subjects by quartiles of EtCO2, and computed the mean absolute CBF maps of the subjects in each quartile. As shown in. 
Figure 1, subjects with higher EtCO2 had overall higher CBF. Table 2 lists the results of stepwise regression on the whole group. Whole 
brain CBF is positively associated with EtCO2 (P=0.001) and negatively associated with Hct (P=4×10-8). Age, Hct and EtCO2 together 
can explain 47% of the inter-subject variations in CBF. Gender, Ya and HR were unable to enter the stepwise model (P>0.8). Table 3 
shows the stepwise regression analysis on the subgroup of cognitively normal subjects, resulting in the same model. Age, EtCO2 and Hct 
together account for 44% of variations in CBF in cognitively normal subjects. 
CONCLUSION: This study demonstrated that, across subjects, whole brain CBF measured by ASL is positively associated with EtCO2. 
The dependence of CBF on EtCO2 was significant whether evaluated on the whole group or on the cognitively normal subgroup. In 
addition, ASL CBF is also inversely associated with Hct, which may be through its effect on blood T1 or a compensatory effect to 
maintain sufficient oxygen delivery.7,8 Our results suggest that obtaining Hct and EtCO2 information from the subjects can reduce the 
variance in CBF data by more than 40%, which is expected to significantly enhance the utility of CBF in scientific or clinical applications. 
 

 

 
Figure 1. Mean absolute CBF maps (in MNI space) of subjects by 

quartiles of EtCO2, along with mean EtCO2 in each quartile. 
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Introduction: 
One of the major challenges of clinical Arterial Spin Labeling (ASL) is the high variability of arterial transit-times (ATT) 
causing the associated arterial transit-delay (ATD) artefacts [1]. This is especially relevant in patients with pathological 
changes like ischemic stroke or Moya-Moya. These artefacts occur when post-labeling delays (PLD) and bolus durations 
(BD) are not optimally adapted to the examined individual. This also affects the free-lunch (FL) approach [2] in Hadamard 
pseudo-continuous ASL (H-pCASL), where the first Hadamard-subbolus is used like a long conventional pCASL-bolus 
and the remaining subboli for time-encoding. Using Walsh-sorted time-encoded pCASL (WH-pCASL) with a dynamic 
feedback algorithm [3], it is possible to employ intermediate perfusion-weighted images (PWIs) for adjusting subbolus 
durations (SBD) during the measurement. The aim is to keep the free-lunch (FL) bolus long enough to maximize signal, 
but short enough to avoid ATD artefacts. To this end, the timepoint at which all tissue-voxels are filled with labelled 
blood is identified. The mentioned methodology was previously described in abstract form using offline calculations [3].  
This abstract shows, for the first time, results of a complete integration of the technique into the WH-pCASL sequence 
utilizing a feedback cycle between image reconstruction and MRI sequence during the scan.  
Methods:  
Encoding:  
An 8x8 Walsh-ordered Hadamard matrix is used which is mirrored left to right. Furthermore, the acquisition of the 
second row is repeated once after interchanging its label and control phases. This results in a 9x8 encoding matrix 
which enables the acquisition of two intermediate PWI after the first three acquisitions. A third intermediate PWI is 
calculated with the fourth acquisition.  
Imaging: 
Three healthy volunteers (27-52 years, 1 female) were scanned at 3T (MAGNETOM Skyra, SIEMENS Healthcare 
GmbH) with a 16-channel head coil. For background-suppression two FOCI pulses (2*T1) were used. The following 
parameters were used for the 3D-GRASE readout [4]: TR = 5 s, TE = 29.48 ms, readout bandwidth = 2298 Hz/px, 
field of view = 228x171x120 mm3, matrix size = 64x48x24 (interpolated to 128x96x24), EPI factor = 48, turbo factor = 
24, flip angle (refocusing pulses) = 120°; this resulted in a total measurement time of 0:45 min. The initial SBDs were: 
650, 650, 650, 650, 300, 300, 300 [ms] resulting in an initial FL-Bolus of 2600 ms. The initial PLD was 100 ms.  
Results & Discussion:  
For all volunteers the initial FL-PLD was too short resulting in low signal in the FL-bolus and not optimal sampling of 
inflow times in measurement without dynamic adaption of the subolus durations (fig 1, bottom row). Consequently, the 
feedback algorithm reduced the duration of the FL-bolus stepwise (final FL-bolus, six subboli: 1757, 300, 272, 271, 
300, 300, 300 [ms]; 1743, 300, 279, 278, 300, 300, 300 [ms]; 1831, 300, 235, 234, 300, 300, 300 [ms]). The timing 
after adaptation resembles the proposed FL set-up for healthy volunteers (FL-bolus: 1800 ms, SBD 2 = 500 ms, SBD 
3-7 = 240 ms, PLD = 100 ms) [2]. Finally, the eight resulting images were used to decode the corresponding seven 
subboli. Thus, the implemented online feedback successfully adapted the SBDs to an appropriate timing with high 
signal in the final FL-bolus and without visible ATD artefacts (fig. 1, upper row) during the measurement without 
increasing the scan time. Moreover, the calculation of new subbolus durations provides further optimization 
possibilities. For instance, analysis of image histograms could be used to identify arterial artefacts.  
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Figure 1: Comparison between not optimal timing (lower row) and the adapted optimized timing for one volunteer (upper row) with 
corresponding effective post labeling delays and subbolus durations. The short FL-bolus (650 ms) in combination with a long FL-PLD (2950 ms) 
results in major signal loss. The adapted timing shows high signal without ATD artefacts in the final FL-bolus.    
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Introduction: Obesity prevalence tends to increase with age and contributes to cardiovascular and brain diseases. Obesity 

affects blood vessels in multiple organs of the body, but less is known about the brain. Here we report a data-driven 

machine learning analysis to explore relationships between a cerebral blood flow (CBF) image and obesity assessments 

over 25 years. 

Methods: Data obtained from a multi-site bi-racial cohort participating in the community-based longitudinal Coronary 

Artery Risk Development in Young Adults (CARDIA) study. There were 378 participants with one MRI scan and 6 

assessments of body mass index (BMI) and waist circumference (WC), that latter spanning 25 years. The 3T brain MRI at 

year 25 included T1-weighted (for brain region segmentation), and pseudo-continuous ASL with 2D echo planar imaging. 

CBF values were extracted for 96 brain regions. We used a convolutional neural network (CNN) to evaluate the association 

of a multivariate and highly collinear input (i.e., regional CBF) to longitudinal trajectories of BMI and WC. The CNN 

model was trained to effectively ‘down-sample’ a matrix of regional CBF to predict the longitudinal BMI and WC estimates 

(Figure 1). After adjusting for age, sex, intracranial volume, years of education and study site, an 8 by 12 matrix of 96 CBF 

regions trained a CNN model to predict BMI and WC history (6x2; output was L2 normalized prior to CNN). 20% (n=76) 

of the sample was used for testing (i.e. “unseen” to the CNN model), 24% for model validation, and 56% for training. We 

used mean squared error for optimization. A range of models were tested to optimize CNN hyperparameters, i.e., filter sizes, 

learning rates, decay, dropout and optimization parameters.  

Results: We identified a CNN model that produced the lowest mean squared error (i.e., normalized fractional difference 

between predicted and actual BMI and WC); 0.007 and 0.008 for validation and test data, respectively. We observed the 

model best prediction for BMI and WC corresponded to obesity data that was 10 and 15 years prior to the CBF scan.  

Figures 2A and 2C show the predicted versus actual 

normalized BMI and WC, respectively (color denotes 

different visits). Figures 2B and 2D show the 

differences are centered around zero and variance is 

lowest for years 10 and 15.  

Discussion: These results suggest there are linkages 

between obesity history and midlife CBF, identified 

using a data-driven CNN. Future research will focus 

on identifying brain regions that are most pertinent to 

obesity.  

  

Figure 1: Study design to estimate obesity history 

from the ASL CBF  

(BMI: body mass index, WC: waist circumference) 

 

Figure 2: Results from unseen data by the CNN model. Predicted 

vs. actual values are shown for different visits (i.e. assessment year).  

Difference is defined as predicted minus actual.  

(BMI: body mass index, WC: waist circumference) 
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Introduction: In arterial spin labeling (ASL), the amount of blood magnetization getting tagged is of high relevance. While in pulsed 
ASL (PASL) this labeling efficiency is very close to 100%, the most often used continuous ASL variant, called pseudo-continuous ASL 
(pCASL) suffers from a somewhat lower labeling efficiency, which typically reaches 80% for in-vivo applications. Several techniques 
exist to measure labeling efficiency and use this value to normalize perfusion measurements. A technique often used was presented 
by Aslan et al. [1], where the amount of blood flowing into the brain is measured by direct flow measurements in feeding vessels and 
this amount is compared to the arterial spin labeled magnetization shown in the perfusion-weighted scans. A more recent approach 
employs a Look-Locker sequence shortly following a pCASL labeling block [2]. With this approach, the amount of labeled blood entering 
the imaging volume was imaged. However, the Look-Locker readout misses the early part of the labeled blood bolus and destroys the 
complete label during readout. Recently, a technique was presented [3], which allows data acquisition simultaneously with the 
labeling process (arterial spin labeled input function ASL-IF). This enables the acquisition of the input function of labeled blood, 
however, normalization to yield labeling efficiency was not included. 
Here, we present a method to normalize the ASL-IF measurement, allowing to measure “realtime” labeling efficiency with a temporal 
resolution as high as 1.42ms. 
Methods: ASL-IF extends the conventional pCASL labeling pulse train (‘ASL rf pulse’) by an additional RF excitation pulse (‘AIF rf pulse’) 
and a signal readout. Additional gradient switching might be necessary to provide extra spatial encoding. In pCASL, a non-zero mean 
gradient is applied along the flow direction (usually the z-direction) to enable flow-induced adiabatic inversion [REF]. This nonzero 
mean gradient leads to z-dependent phase accrual of transverse magnetization between two succeeding rf pulses. This is 
compensated for by considering this phase accrual in the phase of the incident rf pulses. In ASL-IF, the AIF rf pulse is applied at a 
location, where this phase accrual is exactly 90° larger than at the location of the ASL rf pulse. By this, the AIF signal will acquire exactly 
180° phase over two rf periods, while the ASL pulse will always have 0° phase over two rf periods (this is the case for both, labeling 
and control state). By subtracting a time series from the same series shifted by two rf periods, only the AIF signal remains (adding the 
two will yield the ASL signal only). The resulting AIF pulse signal is the sum of blood and tissue magnetization. Subtracting data from 
label and control state of the ASL rf pulse cancels out the tissue signal and allows measurement of the labeled magnetization only, 
which travelled from the labeling slice to the AIF slice. However, this data is not normalized. For this, equilibrium magnetization of 
blood M0b is needed. 
Normalization: M0b is estimated by an additional measurement upfront, where no ASL rf pulses are played but AIF pulses only. In 
addition to this, a FAIR-like preparation is performed, which consists of two separate acquisitions: one with a global inversion pulse 
and one without this pulse. The region of the AIF rf pulse is saturated right before application of the global inversion pulse. This 
produces tagged magnetization with a labeling efficiency of close to 100%. The inflow of this magnetization is acquired and used to 
estimate M0b in two different ways. If the labeled bolus is long enough to show T1 decay, an exponential fit is applied to yield T1 of 
blood along with M0b. If the bolus is too short for fitting, the maximum value is taken and corrected for T1 decay (assuming 
T1b=1650ms). 
ASL-IF imaging parameters: variant uses the x-axis for frequency encoding. Due to additional rephrasing gradients the minimum TR 
was 1.42ms. No extra spatial encoding was needed. Spatial resolution was 9mm and temporal resolution of 1.42ms. A 4-cycle 
Hadamard encoding scheme was used for labeling. 
Results & Discussion: Fig.1 shows the resulting labeling efficiency over time of a healthy human subject for three Hadamard-
encoded labeling patterns (the pure control pattern was subtracted). A single measurement is shown (no averaging). 
Conclusion: ASL-IF allows for measurement of the labeling efficiency during pCASL preparation. If calibrated correctly the labeled 
magnetization is disturbed by less than 5% by the ASL-IF pulse. 
References 
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Figure 1:  Single measurement labeling efficiency of a four phase Hadamard-encoded pCASL preparation. Temporal resolution was 
1.42ms. Scan time (including normalization scan) was 20s. 
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Introduction 

In Pseudo-continuous arterial spin labeling (pCASL) careful planning of the 

labeling plane is required – ideally in regions where relevant feeding vessels are 

straight and cross the labeling plane perpendicularly, but operator-induced 

variability may alter the imaging results. Here, we demonstrate the feasibility 

of using a convolutional neural network (CNN) to automatically predict an 

appropriate labeling position based on given angiography images of the neck. 

Methods 

The training dataset consisted of 112 clinical angiography scans (time-of-flight: 

FOV 200x200x96mm3, voxel size 1.5x1.5x1.5mm3, 3D fast-field echo 

acquisition, 1:07 scan time) plus a separate test dataset of 5 additional scans all 

acquired on a 3T Achieva Scanner (Philips, Best, The Netherlands) under the 

general protocol for sequence development, approved by the local ethics 

committee. Only the coronal maximum intensity projections (MIPs) were 

selected for planning. Data augmentation was performed (stretching, shifting) 

to create a training dataset of 11.200 images in total. Appropriate locations for 

the labeling plane were manually selected by an experienced operator. 

Importantly, several possible labeling plane positions for a single image were 

allowed. A CNN was then trained to predict suitable labeling positions based 

on the angiographic coronal MIPs. Two convolutional layers (kernel size k=3, 

32 channels) were employed, each followed by a max-pooling layer. This was 

followed by a fully connected layer with 500 neurons and a ReLU activation 

function. To account for the fact that multiple suitable labeling positions could 

be selected by the operator, a tailored loss function was employed that yielded 

the mean-squared error between the network output and the reference labeling 

position closest to the network’s output.  

Results 

After training, mean/maximum deviations between network output and ground 

truth of 4.23/13.67px were obtained. No overfitting was observed. Figure 1 

shows the network’s performance on example images from the test dataset. For 

the first four images, the network’s output is reasonably close to one of the 

reference labeling positions, indicating that the network successfully 

generalized from the training data. The bottom image presents one of the largest 

observed deviations (9.43px), where the network suggested a more proximal 

location. The results of the in vivo validation are shown in Figure 2. The 

network’s suggested labeling plane was almost identical to the one chosen by 

the operator. The high quality of resulting ASL images underline the 

suitability of this selected labeling plane. 

Discussion 

While the neural network suggested labeling positions that were close 

to the ground truth in most cases, relatively large deviations were 

observed in some cases. Careful inspection of this MIP (bottom image 

in Fig. 1), however, shows the inherent difficulty of the task, which is 

often a trade-off: while the labeling plane suggested by the network 

would lead to non-optimal labeling of the smaller vertebral arteries, it 

is almost ideal (i.e. perpendicular) for labeling of the carotid arteries. 

As seen in this example, large deviations from the ground truth may in 

some cases simply be caused by operator-specific preferences. 

Consequently, the presented method should be further evaluated on 

larger datasets with annotations from multiple operators. Moreover, 

clinical data collection would also include cases with vascular 

alterations and pathologies that might influence the positioning of the 

labeling plane. 

Conclusion 

In this study, we demonstrate the feasibility of a CNN based fully 

automatic planning approach of pCASL scans, which is the most 

frequently used ASL technique in clinical settings. 

 
Fig. 1: Visualization of the network 

performance on the test dataset. The labeling 

positions provided by the network and the 

ground truth annotations (Ref) are displayed 

as blue and red horizontal lines, respectively. 

Largest deviation appears in the bottom image 

(9.43px). 

 
Fig. 2: In vivo validation of the network’s performance. 

Top row: given the planning angiogram, the network 

suggests a labeling plane virtually identical to the 

operator. Bottom row: example slices of the ASL data 

acquired using the labeling plane suggested by the 

network. 
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Introduction: The spatial coefficient of variation (sCoV) in an arterial spin-labeled (ASL) MRI scan provides insight on 
arterial transit time. This metric reflects delayed blood delivery – seen as hyperintense ASL signal juxtaposed by 
hypointense regions. This study investigated the use of ASL sCoV in the classification of cognitively unimpaired (CU), 
mild cognitive impairment (MCI) and Alzheimer’s disease (AD) cohorts.  

Methods: ASL images from Alzheimer’s disease neuroimaging initiative dataset in three groups of CU, MCI and AD 
(N=258) were used. Pulsed ASL (PICORE QT2) images were acquired on 3T Siemens systems (TE/TR=12/3400ms, 
TI1/2=700/1900ms). We calculated ASL-sCoV in temporal, parietal, occipital, and frontal lobes as well as global grey 
matter. The primary analysis was an analysis of covariance to investigate the effect of cognitive group (CU, MCI, AD) on 
sCoV. We also evaluated the repeatability of sCoV by calculating within-subject agreement in a subgroup of CU 
participants with a repeat ASL. The secondary analyses assessed ventricular volume, amyloid burden, glucose uptake, 
ASL-sCoV and regional CBF as cognitive group classifiers using logistic regression models and receiver operating 
characteristic analyses. 

RESULTS: We found that global and temporal lobe sCoV differed between cognitive groups (p<0.006). Post hoc tests 
showed that temporal lobe sCoV was lower in CU than in MCI (Cohen’s d=-0.36) or AD (Cohen’s d=-1.36). We found 
that sCoV was moderately repeatable in CU (inter-session intraclass correlation=0.50; intra-session intraclass 
correlation=0.88). Subsequent logistic regression analyses revealed that temporal lobe sCoV and amyloid uptake 
classified CU vs. MCI (accuracy=78%). Temporal lobe sCoV, amyloid and glucose uptake classified CU vs. AD 
(accuracy=97%), and glucose uptake classified MCI vs. AD (accuracy=85%). 

CONCLUSION: We showed that ASL spatial heterogeneity can be used alongside AD neuroimaging markers to 
distinguish cognitive groups, in particular, cognitively unimpaired from cognitively impaired individuals. 

Figure 1: Examples of ASL CBF images 
that have low (left) and high (right) spatial 
heterogeneity.  

Table 1: Results of between-group logistic regression models. Odds 
ratio (z values) are reported.  

  
 

Neuroimaging marker CU vs. MCI CU vs. AD MCI vs. AD 
Ventricular volume 
(%ICV) 1.02 (1.7) 1.02(.56) 1.0 (1.5) 

Amyloid burden 
(SUVR) 1.35* (2.38) 5.6* (2.26) 1.1 (1.1) 

Meta-ROI Glucose 
uptake (SUVR) 1.15 (-.76) 60.1* (-2.26) 2.7* (-3.8) 

Meta-ROI ASL CBF 
(mL/100g/min) 1.03 (.5) 1.02 (-.2) 1.1 (-1.5) 

Temporal lobe 
ASL sCoV (%) 1.16* (2.47) 1.8* (2.0) 1.0 (.4) 

Overall model accuracy  78% 97% 85% 

Cognitively unimpaired 
74 years old Male   
GM sCoV = 45% 

Alzheimer's dementia 
76 years old Male 
GM sCoV = 201% 

  *: significant p values at p<0.05. ICV: intracranial volume / SUVR: 
standardized uptake value ratio 
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Optimizing MRF-ASL Scan Design for Precise Quantification of Brain Hemodynamics

Anish Lahiri, Jeffrey A Fessler and Luis Hernandez-Garcia

Purpose: Multiparametric hemodynamic estimates obtained by combining ASL and MR Fingerprinting can be helpful in the comprehensive
diagnosis and treatment planning of several cerebrovascular disorders [1,2]. However, this requires precise quantifiability over a wide parameter
range. In this work, we: (i) extend our optimization towards precise quantification over a wide range of parameter values that includes a number
of pathological conditions while maintaining constraints on total scan time, and (ii) use separate neural networks for regression based estimates
of individual parameters.

Methods: Our scan optimization approach uses the Cramer-Rao Bound, which is the inverse of the Fisher information matrix defined as
follows:

F (θ; ν) =
1

σ2
· [∇θs]T [∇θs]. (1)

where, s(·) ∈ RN×1 is the signal generated from our model, θ ∈ RK×1 represents a single set of hemodynamic parameters, ν ∈ RP×1 are the
scan parameter(s) and σ2 is the i.i.d. Gaussian noise variance.

We optimize the scan parameters by considering a representative collection of true parameter values, Θ, uniformly spread over a comprehen-
sive range by minimizing the following cost function:

ν̂ = arg min
ν∈V

1

|Θ|

∑
θ∈Θ

Tr
(
W · |F

−1(θ, ν)|0.5

N(θ)
·W

)
, (2)

where W is a diagonal weighting matrix assigning priority to each hemodynamic parameter in the cost function and N(θ) = (θ0.5)(θ0.5)T is a
normalization matrix that is divided element-wise into the inverse Fisher information matrix.

Using exhaustive search to minimize the design cost function (2) ensures that our optimized scan yields precise estimates. The set of candidate
labeling schedules is described using a linear interpolation of 5 equidistant points in the ‘labeling space’ (Fig 1).

We train individual neural networks [3,4,5] for estimating each parameter using training data generated by this optimized scan design applied
to a simple two-compartment model. Using individual networks alleviates the need for relative weighing of targets during training. Moreover, we
adopted a Mixture of Gaussian Prior on our training data to emphasize training on biologically feasible parameter ranges.

We the test our methods on data acquired from a healthy human subject, after it is ‘de-trended’ to strip scanner artifacts.

Results: Depicted in Fig 1 is the optimized schedule for 700 frames and a 600s scan duration, as well as the predicted average normalized
standard deviation of parameter estimates over a pathological range. It is clear that linear interpolation allows us to explore the ‘label space’
effectively.

Fig 2 shows that notwithstanding the need for de-trending, our methods indicate promising performances in healthy subjects.

Conclusion: Combining CRB based optimization with regression in MRF ASL enables fast, precise estimates of hemodynamic parameters
and tissue properties in the presence of anomalies that are difficult to characterize. Our results on healthy subject data hint at realizing the clinical
potential of MRF ASL.

Future work will involve in-vivo testing of our methods on patients with cerebrovascular disorders.
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Higher insular activation predicts treatment response to TMS for major depressive disorder 

Tessa R. Abagis a, Stephan F. Taylor b, Luis Hernandez-Garcia c,d 

a: Department of Psychology, University of Michigan 

b: Department of Psychiatry, University of Michigan 

c: Biomedical Engineering, University of Michigan 

d: Functional MRI Laboratory, University of Michigan 

Corresponding author email: tabagis@umich.edu 

Transcranial magnetic stimulation (TMS) is a non-invasive form of brain stimulation which, when applied 

at a high frequency to the left dorsolateral prefrontal cortex (DLPFC), has been found to reduce 

depressive symptoms in patients with treatment resistant major depressive disorder (MDD). To 

investigate neural changes attributable to TMS treatment, we conducted a sham-controlled, double-blind, 

randomized trial with 32 patients with treatment resistant MDD. Patients underwent arterial spin labeling 

(ASL) scans while performing an n-back working memory task before and after blinded treatment in 

order to: 1) individually locate the left DLPFC in each patient for neuronavigated treatment and 2) 

investigate neural changes attributable to TMS. There were no significant changes in activation during the 

n-back task due to receiving TMS treatment. Fourteen of the patients who received sham TMS during the 

blinded treatment phase went on to receive TMS after the second scan. Task-based ASL data in 

responders (n = 27) to TMS treatment revealed that higher right insular activation in the scan immediately 

prior to receiving TMS was associated with a better treatment response, as measured by the Montgomery-

Åsberg Depression Rating Scale (45, 2, 16; k=90; p = 0.018 FWEcorr). This finding aligns with past 

literature which finds a relationship between reduced insular activity and higher levels of psychiatric 

disorders, including MDD. 

This study was funded by NIH R21 MH098174 and Clinical Sciences Translational Award 

UL1TR000433. Research support was also provided by Neuronetics, which did not have a role in the 

design of the study.  
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A Non-Invasive Hybrid PET/MR Approach for Validation of ASL in Clinical Studies  
Tracy Ssali1,2, Lucas Narciso1,2, Justin Hicks1,2, Udunna Anazodo1,2, Elizabeth Finger1,2, Mike S Kovacs1,2, Matthias 

Günther3, Frank S Prato1,2, and Keith St Lawrence1,2 
1Lawson Health Research Institute, London, Canada, 2Department of Medical Biophysics, Western Ontario, London, 

Canada, 3Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany 

Objectives 
While PET with radiolabeled water (15O-water) remains the gold standard for imaging CBF, widespread use is limited 
by the requirement of arterial sampling. Arterial spin labeling (ASL) MRI is non-invasive and quantitative; however, its 
sensitivity to the arterial transit time reduces its accuracy, making it challenging to image patients with cerebrovascular 
diseases (CVD). We previously proposed a non-invasive hybrid PET/MR approach that uses a measurement of global 
CBF (gCBF) by phase contrast (PC) MRI to convert PET activity into quantitative CBF images without the need for arterial 
sampling1. This PET/MR approach has the potential to provide a method of measuring regional CBF that is accessible 
to patients whom arterial sampling is not advisable and more importantly, can be used as a reference to optimize 
ASL. The technique was initially validated in a large animal model, and the next step is to adapt it to human studies. 
Although the PET imaging will be similar, the PC sequence needs to be optimized for measuring gCBF in humans. In this 
study, we assess the variability in gCBF due to slice location and gating, and as a proof of concept, we present the first 
CBF images from one participant obtained using this non-invasive hybrid PET/MR approach. 

Methods 
Data were acquired using the Siemens Biograph mMR in 6 healthy volunteers (age: 31±10, 2 females). PC images (4 
averages, VENC: 70 cm/s, retrospective-gating) were acquired at the level of the first/second cervical vertebrae 
(gCBFlow) and basilar artery (gCBFhigh). Global CBFlow was repeated using a non-gated sequence. In 3 volunteers, PC data 
were acquired on 2 occasions separated by 1-2 months. Global CBF was quantified by scaling the blood velocity by 
vessel area and brain volume. For hybrid PET/MR-CBF1, 5 minutes of PET list-mode data were acquired after rapid 
intravenous bolus injection of 15O-water (800 MBq). Raw PET data were reconstructed using an MR-based attenuation 
correction map. For comparison, ASL (PCASL-GRASE) data were acquired with PLD= 2s, LD= 1.8s. 

Results 
Global CBF was 53.9 ± 7.4 (gCBFlow) and 57.5 ± 12.6 ml/100g/min (gCBFhigh) (ns). Repeat measurements were within 
9.0% (gCBFlow) and 6.1% (gCBFhigh) of each other. Non-gated gCBF was 24% lower than the gated sequence (ns). CBF 
images obtained by PET/MR and ASL are shown in Figure 1.  

Conclusions 
The gCBF estimates were similar2 but lower than previous 
studies3. Differences could be attributed to increased noise 
resulting from a high VENC4. The 6.5% difference between 
gCBFhigh and gCBFlow, which may be significant with a larger 
sample size, could be related to partial volume errors due to 
contributions from stationary tissue 5,6. PC-CBF 
measurements were reproducible, with <9% difference 
between measurements. Although gCBF generated by the 
two approaches were similar, the ratio of grey-to-white 
mater CBF appears to be higher in the ASL-CBF map (Figure 
1). Future goals are to use this hybrid approach to image CBF 
in CVD patients to evaluate its ability to quantify perfusion 
abnormalities and subsequently, determine optimal 
parameters for imaging CBF in this population with ASL.  

References 
1.Ssali, T. et al. JNM(2018). 2.Spilt, A. et al. Radiology (2005).3.Puig, O. et al. JCBFM(2018). 4.Lotz, J. et al. JMRI(2005). 
5.Peng, S.-L. et al. JMRI(2015). 6. Tang, C. et al. JMRI(1993). 

Figure 1: Cerebral perfusion maps measured by (A) ASL 
(CBF = 52.9ml/100g/min) and (B) PET/MR approach 
(CBF = 48.4 ml/100g/min). 
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Does partial volume correction improve the repeatability of arterial spin labeling perfusion imaging? 

F. Kennedy McConnell1,2, A. Segerdahl2, T. Okell2, M. Mezue2, I. Tracey2, M. Chappell1,2 

1Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom, 2Wellcome Centre for Integrative 

Neuroimaging, University of Oxford, Oxford, United Kingdom 

Introduction: Partial volume effects (PVE) are important in arterial spin labelling (ASL) cerebral perfusion imaging, due to the low 

spatial resolution of ASL data and large differences in the perfusion properties of grey matter (GM) and white matter (WM). PVEs 

thereby present a barrier to the clinical application of ASL, particularly in disease contexts involving subtle, localized perfusion 

changes, such as dementia. Recent work [1] has shown that the two most commonly applied methods for PVE correction (PVEc) 

[2,3], improve the within-subject coefficients-of-variation of ASL perfusion measurements made on the same day, 1 week, and 1 

month apart. The same work showed that the spatially regularised method (SR PVEc) [2] was better able to preserve spatial details 

within perfusion images, whereas the linear regression method (LR PVEc) [3] was less sensitive to noise in the data and errors in 

the PV estimates, which they concluded could be due to the greater smoothing introduced by the technique. In this work we 

further hypothesized that PVEc would improve the repeatability of ASL measurements in anatomically defined GM brain regions, 

by reducing apparent variability in perfusion due to PVE. 

Methods: ASL data acquired by [4] from 7 seven subjects each scanned at rest up to 3 times over 2 sessions (1 week apart) was 

analysed retrospectively. A multiPLD pCASL acquisition with background suppression was used: labeling duration=1.40s, PLDs: 

0.25, 0.50, 0.75, 1.00, 1.25, and 1.50s, TR=4s, TE=13ms, 24 slices each 4.95 mm. Each session included 96 alternating label-control 

volumes. A T1 weighted structural image, head and body coil calibration images and B0 field maps were also acquired. The ASL 

data were analysed using BASIL [5] within FSL. These tools were used to correct for EPI distortions, slice timing delays, and subject 

motion, as well as to perform label-control subtraction, averaging of repeats, and Bayesian inference of cerebral blood flow (CBF) 

and arterial transit time. Calibration used a CSF reference region. The analysis was performed in three ways: without PVEc (no 

PVEc), with SR PVEc [2], and with LR PVEc [3]. PV estimates were obtained from the T1 image. The effect of PVEc on within- and 

between-session differences in CBF were assessed using Bland-Altman analysis, and the within- and between- session agreement 

was assessed through correlation analysis.  

Results/Discussion: Figure 1 shows results of Bland-Altman analysis. The within-session biases for all three approaches to PVEc 

were small (<5 %). The bias between the week-repeat acquisitions ranged from 9.4–11.1 % with LR PVEc showing the lowest bias 

and no PVEc showing the highest. Both no PVEc and the SR PVEc method had similar Bland-Altman confidence intervals, whereas 

LR PVEc showed reduced variability, likely due to the smoothing inherent to the LR PVEc technique. Correlation analysis showed 

reasonable and significant test-retest agreement (all R2>0.57 and all p<0.001): lowest correlation was seen between-sessions and 

without PVEc (R2=0.575), and highest was seen in the within-session experiment with LR PVEc (R2=0.868). Correlation was always 

stronger within-sessions than between-sessions. 

Figure 1 - Bland-Altman analysis 

showing repeatability of CBF 

measures in 8 brain regions. 

Vertical axis: difference between 

CBF measurements expressed as % 

of their mean. Red lines show bias 

and grey lines show 95% CIs (bias + 

1.96*sd). Top row: within-session 

a) no PVEc: 4.4±16.1 %, b) SR PVEc: 

2.5±18.4 %, c) LR PVEc: 2.5±12.7 %. 

Bottom row: week-repeat d) no 

PVEc: 11.1±28.26 %, e) SR PVEc: 

10.5±27.1, f) LR PVEc: 9.4±22.6. 

Conclusions: Building on the work 

of [1], these results show that PVEc 

improves test-retest agreement of 

ASL perfusion measures in GM brain 

regions and leads to similar (SR PVEc) or reduced (LR PVEc) heterogeneity in perfusion estimates. PVEc should therefore be 

considered for use in clinical applications of ASL. 

References: [1] Zhao, Neuroimage, 2017; 162:384-397 [2] Chappell, Magn Reson Med, 2011; 65(4):1173-83 [3] Asllani, Magn 

Reson Med; 60(6):1362-71 [4] Mezue, J Cereb Blood Flow Metab, 2014; 34(12):1919–1927 [5] https://github.com/ibme-

qubic/oxford_asl/releases 
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Neurovascular	uncoupling	in	schizophrenia:	A	bimodal	meta-analysis	of	brain	perfusion	and	glucose	metabolism	
	
Niron	Sukumar1,	Priyadharshini	Sabesan1,	Udunna	Anazodo3,	Lena	Palaniyappan1,2,3	

		
1	Department	of	Psychiatry,	University	of	Western	Ontario,	London,	Ontario,	Canada.	
2	Robarts	Research	Institute,	University	of	Western	Ontario,	London,	Ontario,	Canada.	
3	Lawson	Health	Research	Institute,	London,	Ontario,	Canada.	
		
	
BACKGROUND:	 Since	 the	 time	 of	 Ernst	 von	 Feuchtersleben	 who	 coined	 the	 term	 psychosis	 (1845),	 psychotic	
disorders	have	been	 suspected	 to	be	associated	with	disturbances	 in	 cerebral	blood	 supply.	 The	use	of	modern	
neuroimaging	 approaches	 has	 uncovered	 abnormalities	 in	 the	 resting-state	 regional	 cerebral	 blood	 flow	 (rCBF)	
across	various	brain	regions	in	schizophrenia.	In	a	healthy	brain,	rCBF	is	tightly	coupled	to	resting	cerebral	glucose	
metabolism	(rCMRglu),	which	increases	with	synaptic	activity.	The	coupling	of	rCBF	(measured	using	arterial	spin	
labeling,	ASL)	and	rCMRglu	(measured	using	18flurodeoxyglucose	positron	emission	tomography,	FDG-PET)	depends	
on	 the	 integrity	 of	 the	 neurovascular	 unit.	 In	 schizophrenia,	 several	 lines	 of	 evidence	 point	 towards	 aberrant	
neurovascular	 coupling	 especially	 in	 the	 prefrontal	 regions,	 though	 no	 simultaneous	ASL-PET	 studies	 identifying	
regions	with	concordance	or	discordance	between	metabolism	and	perfusion	have	been	reported	to	our	knowledge.		
To	address	this	gap,	we	undertook	a	voxel-based	bimodal	meta-analysis	to	examine	the	relationship	between	rCBF	
and	rCMRglu	in	schizophrenia.	We	hypothesized	that	several	brain	regions	would	show	combined	abnormalities	of	
perfusion	and	metabolism,	while	uncoupling	of	these	two	parameters	will	be	observed	in	prefrontal	regions.	 
	
METHODS:	We	undertook	a	systematic	literature	search	to	include	all	available	studies	reporting	voxelwise	ASL	or	
FDG-PET	changes	 in	 schizophrenia	using	coordinates	based	multimodal	meta-analysis	 implemented	using	Signed	
Differential	Mapping	(SDM)	software.	21	studies	met	the	inclusion	criteria,	comprised	of	data	from	618	patients	and	
610	 controls,	 available	 for	meta-analysis.	We	 used	 conjunction	 and	moderator	 analyses	 to	 evaluate	 areas	with	
concordant	and	discordant	abnormalities	 in	 rCBF	and	 rCMRglu	 respectively.	We	also	undertook	meta-regression	
analyses	to	study	the	effect	of	age,	gender,	duration	of	 illness,	anti-psychotic	dosage,	and	 illness	severity	on	the	
illness	related	changes	in	rCBF	and	rCMRglu.	
	
RESULTS:		Among	patients	with	schizophrenia,	we	observed	a	conjoint	reduction	in	rCBF	and	rCMRglu	in	the	right	
median	cingulate	/	paracingulate	gyri	and	left	interior	frontal	gyrus.	A	conjoint	increase	in	rCBF	and	rCMRglu	was	
noted	in	the	right	cortico-spinal	projections	and	right	inferior	temporal	gyrus.	Regional	neurovascular	uncoupling	
was	 notable	 in	 the	 superior	 frontal	 gyrus	 (reduced	 rCMRglu,	 normal	 rCBF)	 and	 cerebellum	 (increased	 rCMRglu,	
normal	rCBF).	Meta-regression	analyses	were	unstable	due	to	the	low	number	of	eligible	studies.	
	
CONCLUSION:	Our	results	suggest	that	several	key	regions	implicated	in	the	pathophysiology	of	schizophrenia	such	
as	 the	 frontoinsular	 cortex,	 dorsal	 ACC,	 putamen	 and	 temporal	 pole	 (constituting	 the	 Salience	 Network)	 show	
conjoint	 metabolic	 and	 perfusion	 abnormalities	 in	 patients.	 In	 contrast,	 discordance	 between	 metabolism	 and	
perfusion	were	seen	in	superior	frontal	gyrus	and	cerebellum,	indicating	that	factors	contributing	to	neurovascular	
uncoupling	(e.g.	inflammation,	mitochondrial	dysfunction,	oxidative	stress)	are	likely	operates	at	these	loci.	Hybrid	
ASL-PET	studies	focussing	on	these	regions	could	confirm	our	proposition.	
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Velocity Selective ASL in the Rat at 9.4T 
Matthew Budde1 Seongtaek Lee2, Briana Meyer3 

1Department of Neurosurgery, 3Neuroscience Doctoral Program, Medical College of Wisconsin, Milwaukee, WI 2Department 
of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee, WI 
 
Introduction: Arterial spin labelling (ASL) has seen clear utility for the brain, yet similar applications to the spinal cord have 
remained limited.  In addition to challenges of imaging the cord owing to its small size and motion and susceptibility artifacts, 
the blood supply is collateralized and segmental, and it does not lend itself to a single labelling plane as in pseudocontinuous 
ASL[1].  Velocity selective ASL (vsASL) has shown promise in tissues with similar features such as the heart[2] and 
placenta[3], but neither has vsASL been demonstrated on preclinical systems nor has it been used for the spinal cord.  In 
this work, we lay the groundwork for preclinical spinal cord vsASL by first assessing the tagging performance in a flow 
phantom and rat thoracic aorta and kidney. 

Methods: Two variants of the vsASL tagging module were implemented on a 9.4T MRI small animal system (Bruker 
Biospec).  The BIR-8 scheme[4] consisted of adiabatic tanh/tan pulse[5] with κ=20, ζ=20, and ωmax=20 and a subpulse 
duration of 1ms for a total module time of 14 ms.  Gradients of 53 mT/m with a 0.3 ms ramp, 0.5 ms plateau, and 0.34 ms 
delay achieved a velocity cutoff (Vc) of 2.0 cm/s.  The velocity selective saturation (VSS) and inversion (VSI) tagging 
modules were implemented as described[6], with 9 hard pulses of 10 or 20° flip angles for saturation or inversion, 
respectively, 29 mT/m gradients, Vc of 4.0 cm/s, and a module time of 43 ms. 

A flow phantom was used to asses the velocity tagging performance, with the mean flow rate approximating the rat aorta 
(~10cm/s). Tygon tubing connected to a parastaltic pump along with a static gel phantom were inserted into a 40 mm Litz 
cage coil (Doty Scientific, Inc).  Flow-compensated gradient echo images were acquired (TR/TE=500/3 ms) with each of 
the tagging modules with a minimal (1 ms) post-label delay.  Additionally, 10-14 week old Sprague Dawley rats were used 
for in vivo assessments.  Rats were placed supine over a 4-channel surface coil in a 9 cm linear volume coil for excitation.  
A single axial slice included the aorta and kidney and gradient echo images were cardiac gated with varying R-wave 
delays.  All studies were approved by the IACUC of the Milwaukee VA Medical Center and the Medical College of 
Wisconsin. 

Results: The BIR-8 vsASL scheme demonstrated 
near complete suppression of signal in the flowing 
phantom with negligible changes in the static 
phantom.  However, apparent flow artifacts were 
evident in the non-velocity encoded image, and 
these are attributed to the VS module since the 
same image obtained without it was devoid of 
artifacts.  In the phantom, the VSS/VSI module also 
exhibited adequate suppression of flowing spins(not 
shown)  but artifacts were also present in the non-
velocity encoded images.  In the rat aorta, similar 
performance was seen with clear suppression in the 
tagged condition, but also signal loss in the control 
condition, but full signal in the image without the 
preparation module.  In the kidney, vsASL perfusion 
contrast was evident, but it was substantially reduced in SNR compared to the same measurement with pCASL. 

Discussion: In these initial tests, the BIR-8 module provided better performance than the VSS/VSI modules.  Optimizing 
the balance between pulse duration and off-resonance performance of the BIR-8 pulses will be investigated to minimize 
flow artifacts.  In the thoracic rat spinal cord, the field deviates by approximately 400 Hz over our desired imaging volume.  
BIREF-1 pulses may be one alternative to minimize flow artifacts[7] but Bloch simulations indicate they may require higher 
power or pulse durations compared to BIR-8.  Likewise, the VSS/VSI modules were not optimized for the large susceptibilties 
experienced at high field and require further investigation and simulation to improve their performance at 9.4T.     

Acknowledgements: Supported in part by Merit Review Award I01 RX001497 from the US Department of Veterans Affairs 
Rehabilitation Research and Development Service and by the National Institutes of Neurological Disorders and Stroke R01 NS109090. 

References: 1.  D. C. Alsop, et al. Magn Reson Med 73, 102-16, (2015).2.  T. R. Jao and K. S. Nayak. Magn Reson Med 80, 272-278, (2018). 3.  Z. 
Zun and C. Limperopoulos. Magn Reson Med 80, 1036-1047, (2018). 4.  J. Guo, et al. Magn Reson Med 73, 1085-94, (2015). 5.  P. Kellman, et al. Magn 
Reson Med 71, 1428-34, (2014). 6.  Q. Qin and P. C. van Zijl. Magn Reson Med 76, 1136-48, (2016). 7.  E. R. Jenista, et al. Magn Reson Med 70, 1360-
8, (2013). 
 

 

In the flow phantom 
(top), vsASL shows clear 
suppression of flowing 
signals, and negligible 
change in static signals 
using the BIR-8 scheme.  
In vivo (middle) signal 
suppression is evident in 
the aorta (white arrow) in 
the tagged condition, but 
also in the control 
condition while other 
vessels (blue arrows) 
show better tagged-
control differences. In 
vivo in the rat kidney, 
pCASL shows better 
SNR in the kidney than 
vsASL. 

TaggedControl Difference

pCASL vsASL

Tagged ControlNoPrep
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